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FOREWORD

The first major activity o f the International Centre for Theoretical Physics 
in Trieste was an International Seminar on Ijlasma Physics in October 1964, and 
the Proceedings were published by the International Atomic Energy Agency. 
With that Seminar began a tradition o f Jextended contacts between plasma 
physicists from the United States, West European and Soviet schools. The present 
Proceedings contain selected lectures from [the ICTP College on Theoretical and 
Computational Plasma Physics held in Trieste from 22 March to 9 April 1977 
and from the Third International ( ‘Kiev’ ) (Conference on Plasma Theory held in 
Trieste from 5 to 9 April 1977, concurrently with the last week o f the College.

The decision to hold in Trieste the Third International ( ‘Kiev’ ) Conference 
on Plasma Theory, directed by B.B. Kadomtsev and V.N. Tsytovich (Moscow, 
USSR), was made for two reasons: first, to take advantage o f the fact that many 
regular participants would already be lecturing at the ICTP College, and, second, 
to include a number o f plasma physicists from developing countries who would 
be attending and lecturing at the College.

The College provided a comprehensive survey o f the state o f current fusion 
research, with the aim o f training participants in the use o f the principal tools o f 
plasma theory and computation. About half the papers are based on extensive 
computer calculations, following the prlesent trend in plasma theory. The 
Directors o f the College were B.B. Kadomtsev (Moscow, USSR), B. McNamara 
(Livermore, USA) and M.N. Rosenbluth (Princeton, USA).

Financial support from the International Union o f  Pure and Applied 
Physics (IU PAP) for the College and a special grant from the IAE A  for the 
‘Kiev’ Conference are gratefully acknowledged by the organizers o f these 
activities.

Abdus Salarn
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ICTP COLLEGE ON THEORETICAL AND COM PUTATIONAL 
PLASM A PHYSICS 1977

Research on power from nuclear fusion is moving firmly into the development stage, 
and world expenditure is now about one thousand million US dollars per year. In a three-week 
College at the International Centre fo r  Theoretical Physics, Trieste, from 22 March to 
9 April 1977, the major theoretical and computational advances o f  the last five years were 
reviewed in some depth. The level o f  the lectures was rather advanced, with only a few  basic 
talks to lay the groundwork. A few  lectures were given on the younger but exciting develop
ments in electron beams and laser fusion. The complete programme o f  the College will be 
found in Appendix A.

The instabilities which plagued the fusion experiments o f  the 1960s are now fairly well 
understood and catalogued, and non-linear theories have been developed to explore their 
consequences. In mirror machines the cyclotron frequency instabilities which feed  on the 
non-Maxwellian ion distributions have been stabilized experimentally and the stabilization 
mechanisms and time development o f  the experiments explained theoretically. In tokamaks, 
in which the major fusion experiments have taken place, the upper limits to the machines’ 
ability to contain hot plasma have been explained in great detail, including the non-linear 
plasma motions and topological changes in the plasma-magnetic field  system at the stability 
limits.

A major contribution to the understanding and design o f  these experiments has come 
from the computational physics studies o f  plasma transport, equilibrium, stability, and the 
non-linear development o f  instabilities. The US National Magnetic Fusion Energy Computer 
Center has been operating since 1975 and consists o f  a central CDC 7600, limited by 50 kilobit 
lines linked to a DEC PDP-10 computer at each o f  the major fusion research sites. European 
laboratories have a variety o f  computing facilities, and Japan is bringing a national centre into 
operation very soon. The computational methods and results in fusion research were reviewed 
extensively at the College. Techniques have advanced rapidly in the last few  years, to the 
point where three-dimensional, time-dependent magnetohydrodynamics o f  high-pressure pinches 
and five-phase space-dimensional electromagnetic particle models o f  laser-plasma interactions 
are routine calculations. In a sense, these huge calculations are like experiments, and the results 
are widely available in the literature to guide the theorist in non-linear calculations and to help 
the experimentalist in understanding scaling laws with more realistic physics and geometry than 
the theorist can provide.

The ICTP College was a welcome opportunity fo r  many people from  developing countries 
to review and discuss current progress in plasma physics and fusion research. Although 
computing is becoming dramatically cheaper each year, only the largest institutions in 
developing countries have computers, and fusion research has becom e so expensive that only 
the commitment o f  the advanced countries to solving their long-term energy needs will allow 
it to com e to fruition. Nevertheless, there is a rich diversity o f  plasma problems which any 
well-informed physicist can solve, and developing countries have made many significant 
contributions in the field.

It is a pleasure to acknowledge the excellence o f  the facilities at ICTP and the generous 
efforts o f  the s ta ff there which made the meeting so effective. Professor Salam ’s guidance 
in our interactions with the participants and lecturers from developing countries was 
especially valuable. We look  forward to many fruitful events in the future.

B. McNAMARA
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IAEA-SMR-31/1

SINGLE-PARTICLE BEHAVIOUR 
IN PLASMAS*

Brendan M cNAM ARA 
Lawrence Livermore Laboratory,
University o f  California,
Livermore, California,
United States o f  America

Abstract

SIN G LE-PA RTIC LE BEH A V IO U R IN PLASM AS.
1. M otion o f charged particles in electrom agnetic fields; 2. Adiabatic 

invariants; 3. Analogy with magnetic field structures; 4. Resonant effects on adiabatic 
invariants; 5. Jum ps in adiabatic invariants; 6. Superadiabaticity.

INTRODUCTION

Since one cannot expect to memorize the content o f such an intense course 
o f lectures as this, considerable emphasis has been placed on collecting and 
cataloguing key results and on principal references. The behaviour o f single 
particles in a plasma is basic to the rest o f the lectures from the ICTP College in these 
Proceedings, but is not elementary. The subject is well covered in many textbooks 
and the purpose o f  this paper is merely to collect in a brief form the essential 
formulae and mathematical methods.

The paper essentially discusses the motion o f  charged particles in electro
magnetic fields. The various useful forms o f the method o f averaging are displayed 
and applied to calculation o f constants o f motion. The breakdown o f these 
constants is discussed along with some o f the implications for fusion systems.

1. MOTION OF CHARGED PARTICLES IN ELECTROMAGNETIC FIELDS

Charged-particle motions are generally complicated, and in designing fusion 
devices one tries to simplify the motions by use o f symmetries or constants o f the

* Work performed under the auspices o f the US Department o f Energy by the Lawrence 
Livermore Laboratory under Contract No. W -7405-EÑ G-48.

5



6 McNAMARA

particle motions to provide confinement within the device. The equations o f motion 
in an electric field E (X ,t) and in a magnetic field В (X ,t) are, in Gaussian units,

i E - л /  dV - e  / й .  V X B \
dt ’ dt m V с ) ( U )

where X  is the position o f  the particle and V  its velocity. The equations 
obviously separate into motion parallel and perpendicular to B. In constant 
E and В fields the equations are trivially solved to give:

X, = X l0+ V|lot + EBt2

Vi = V «o+ - ¿ -E i t d -2 )

X x= VD t + p

1 —>where the electric drift velocity is VD= (E X B/B ) c; p is a circular motion in 
the drift frame with frequency £2 =  eB/mc; and Larmor radius p = \JQ.. It is 
important to notice that the drift velocity is the same for ions and electrons, being 
independent o f mass and charge, but that the cyclotron frequencies and gyroradii 
are not. The electric field only accelerates the particle parallel to B, and because 
electrons respond so quickly it is difficult to maintain a constant E ( , except in 
a potential well generated by a collection o f (magnetically trapped) ions.
We assume Ел= 0 for the moment.

In a real device we need to understand the motion o f  particles in electro
magnetic fields which vary on time scale t and space scales L±, L , . In the case 
where Sir, p/Lx, p/L, are all 0(1), only a high degree o f symmetry will save you 
from needing a computer, but otherwise there are various forms o f perturbation 
theory which give approximate solutions. The most useful cases will be discussed.

1.1. Small Larmor radius, slow time scales

The case with SIt >  1, p /L L,p /L t<  1 is o f the most interest. Since the 
gyrofrequency is large, it seems appropriate to average out this rapid motion and 
develop equations for the mean drift o f the particle. As the particle moves, its 
local gyrofrequency will change; consider the Taylor series expansion o f  the 
function

x = x0 cos (Í20+ 6 Д ) *

= x0 cos n 0t + x0t eí2 sin Í20t -  ( t e f i )2 cos Í20t + (1.3)
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The successive terms are not purely oscillatory, but are ‘secular’ with 
coefficients 0(t"). The radius o f  convergence o f  the series is 0(i2g), so simple 
Taylor expansion o f the equation o f motion is o f little value and we prefer the 
method o f averaging which, although it is only asymptotic, has a range 0(l/ef2o) 
or better. The method is required in many applications and so is worth giving 

here in detail.
The original equations o f motion must be normalized and transformed 

( x ; V y, v) to display the phase angle v o f the gyromotion as follows [1]:

0t= eI '  О + e f ) 0 „ =  1 +eco

which can be integrated over v. We combine the equations into a single vector 
equation by setting Z = (ф, Z ), H =  Ÿ  = Ÿ )  and G (Y ) = (f,g ), and

? t = eg (Ÿ , v) vt = I + ef(Y , v) (1.4)

where g and f  are periodic in v, period r0, and e is the small expansion parameter, 
0(p/Li;  p/L||, £2r_1). We construct ä transformation to new variables (Z , ф) with 
Z periodic in v, and ф being an angle variable:

Z(Y,v) = Z(Y,v + t 0 )
(1.5)

0(Ÿ ,i '  + 7b) = т0 + 0(Y, v)

The equations for the drift variables (Z , ф) should not contain the angle 
variable which is to be averaged out:

Z t= e h (Z ) 0t = 1 +ew (Z ) (1.6)

The original Eqs ( 1.4) and the transformation give

t t = e  g Z ^ + d + e O ^ s e H
(1.7)

the integration, with boundary condition Z (0 ) = Y, gives
V

( 1.8)
о

The condition that Z should have no secular terms in v is that the average o f the 
integrand should vanish:

To
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Equations (1.8) and (1.9) are sufficient to generate a power series expansion 
for the transformation Z and the averaged driving terms H. The result is con
veniently written down in terms o f the integrating and averaging operators (~  ,- )  
defined as follows: for any function f, periodic in v,

( 1.10)

f

Notice that  ̂f  contains a constant o f integration or initial condition and so 
7 = 0  but f  Ф 0. Without further ado, we write the transformation to 0(e3) as

Z = Ÿ — eG + e2 ÍG • G — G • G ] + 0 (e3)

(1.11)

Y = Z + e G  + e2( G ' G - G - ^ ] +  0(e3)

The average co-ordinates Z have the equation o f  motion

Zt= a + e G ( Z ) - e 2 G G Z- G  • Gz + 0 (e3) (1.12)

where a= (1,0,0,...,0). Notice that the phase ф does not appear on the right o f 
this equation, as desired. There are many descriptions o f the method o f  averaging 
in the textbooks but Eqs (1.11) and (1.12) are the answer for the plasma physicist. 
In celestial mechanics one is usually interested in a high order o f  accuracy and so 
requires many orders o f the expansion. The best method is due to Deprit [2 ] 
and is well described in Nayfeh’s book [3]. The method uses a generating function 
or Lie transform, W (Y ), which allows the manipulations to be computerized on an 
algebraic manipulator. This generating function approach also allows any function 
o f the old variables to be expanded directly in the new variables.

We observe that the original problem has merely been transformed to a 
simpler one which still must be solved (Eq.(1.12)). As a final answer, which will 
appear many times in these Proceedings, we can write down the result o f applying
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this method to eliminating the gyrorotation from the equations o f motion o f a 
charged particle (1.1). These are the well-known drift equations [4]:

dX . В с -  -  mcv„ _  _

1 Г = , , 'в + "i* " ¡¡F "  BX<B'V> 'B +
mcv.

2eB
BX VB

de -, dX mvf ЭВ
---- =  e F ---------1------ ---------
dt eb dt +  2B 9t

=  0  =
d¿up

dt

(1.13)

where the energy o f  the relativistic particle is

„3

e = m0c

(c J- v ?  + vi)'

or, for a non-relativistic particle, 

m . ,
e = T  (V|I + v-l)

We observe that, to this order, the perpendicular velocity is determined by the 
constant o f the motion, the adiabatic invariant fi0. When V X В = 0 the magnetic 
drifts are o f  the same form and we get

dX  _
dt “  v" в

В . с  me
“  +  (E X B) +  —— 3 

B2 2eB
(В X VB)(2v2+ v^) (1.14)

One essential assumption in the derivation was that E <  vB/c. I f  we allow for a 
large drift velocity, vE = ( ï i  X B/B2)c, the equations are modified to

dX _  -► _  me 

dt _ U _  eB2

эи
+  (U  V ) • U X B +

mcv,

2eB
B X V B
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The second term in (1.15) is the drift due to the inertial effect o f the large electric 
drift. These drift equations are very useful in determining the dynamics o f a 
plasma on time scales long compared with the cyclotron period. In some cases 
the drift equations themselves will describe a still slower period oscillation. The 
same technique can be used to average over this oscillation and reduce the system 
still further.

1.2. High-frequency fields

In the case when П т <  1, t v / L <  1, the equations o f motion can be averaged 
over the high-frequency field variation. In the non-relativistic case we get

dV =» e -  e2 —
m - 7 - =  eE (V X B )— ------ г VE2 (1.16)

a ï  ̂ 2mcj

The high-frequency part o f the field appears as a potential u = (e2/2moj2) Ë2, 
independent o f the sign o f the charge. This additional force is o f  prime importance 
in laser fusion. When E, В vary slowly on the scale o f the Larmor period, the 
method o f averaging can be applied, as before.

2. AD IABATIC  IN VAR IANTS

The six equations o f motion have six constants o f  the motion, namely the 
initial conditions on the motion. These are in general useless for making further 
deductions and we seek a better choice o f constants in systems with sufficient 
symmetry. A  typical example for a charged particle in a time-independent field 
is the total energy or the Hamiltonian

(21)

I f  the fields В = V X A , E =  -  V0, are independent o f a co-ordinate в , then the 
corresponding canonical momentum Pg is a constant o f the motion. Such 
constants confine a particle to a surface in phase space which, i f  we are lucky or 
chose the configuration carefully, will confine the particle in configuration space. 
One method for finding constants in less symmetric situations is to transform 
the Hamiltonian to momentum co-ordinates which display the Larmor angle. We 
could then seek a canonical transformation, as a power series in rL/L, which would 
make the Hamiltonian independent o f  the new phase angle and hence the corres
ponding momentum would be a constant. Unfortunately, it would be expressed
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in terms o f the averaged variables and we would then have to find its expansion 
as a series in the original phase-space co-ordirtates.

We shall demonstrate a different formulation which is generally useful. 
Consider systems in which the particles execute closed orbits in the unperturbed 
system, so the Hamiltonian can be reduced to

where Í2 is (almost) periodic in the angle co-ordinate q , . Then we look for a 
constant o f the motion J by solving the linear, partial differential equation

H = P1 + eS2(qi,Pi) (2 .2)

(2.3)

where [J,H] is the Poisson bracket,

(2.4)

J is expanded as a power series

о

to give the recursion

(2.5)

The nth equation is easily integrated:

(2 .6)

where Gn is independent o f qr  We finally require that Jn be periodic in qt and 
so the average o f  the Poisson bracket must be made to vanish by choice o f  J0 and 
the integration constants Gn:
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The first equation is

J0,i2 = 0 = J0,

since J0 is independent o f q ,. The obvious non-trivial solution is 

J 0 = J „ ( ñ )

(2 .8).

(2.9)

The series can be developed in terms o f the Poisson bracket operator, the averaging 
operator and the indefinite integrator

J =  У *CJ-J)dqt

and the general answer, correct to 0(e2), is

+  e2J  =  n  + e [ S 2 , f i ]

+ 1r

£2 ,£2 

+ ¥

[ £ 2 , S 2 ]  [ S 2 , £ 2 ] , S 2

П, [Í2 .Í2] + 0 (e3)

(2 .10)

(2 .11)

The most general Hamiltonian for which we have developed such an adiabatic 
invariant is o f  the form [5]:

H=t//(eq2, ••• , eqN-, Pj, eP2, ... , ePN, et) + eí2(q¿, Рь et) (2.12)

In terms o f the rotation frequency X = дф1д¥1 and the ‘slow’ bracket {  }  defined as 

3f
№ ,f] = X - ^ - + e { * , f }  

the result for a general oscillatory system is

(2.13)

1 Э

Ù , 1 П2 1 Í2 -
T-* +

2X2 ’ 2 X T  .

Щ  +  L
X 3et \ X У 2

¿I
T ’ T +  0 (e3) (2.14)

As far as plasma theory is concerned, we can regard the calculation o f 
adiabatic invariants as solved. However, the Hamiltonian formulation is most 
inconvenient since H is a function o f the potentials (A ,0 ) and not the fields (B,E).
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The above method really only required the equation [J,H] = 0 to be expressed in 
co-ordinates which display the phase angle over which we average. Hastie, Taylor 
and Haas [6] have applied the method to the Vlasov equation to generate the 
magnetic moment p, the longitudinal invariant J, and the flux invariant Ф as 
given below. The algebra involved was formidable and the results are worth some 
comments.

A  charged particle in a time-independent electromagnetic field will have as 
constants o f the motion the energy e and the canonical moments corresponding 
to any symmetries o f the configuration. I f  there are no symmetries, then, in a 
strong magnetic field such that гь /Ь^1 , the magnetic moment will be an adiabatic 
constant:

m
ß  =  ßo +  —  + 01 — (2.15)

where

^o =
2B

В V W D +
V-b

Y l- (a - V )b + a -  (Vi -V)b + 4pi0b - V X b

and

Wn
_B

В
2 x  ( Y f p  + ^VB) a =

V X B

B2

/5 — ~b • Vb, the field line curvature

Notice that ц contains VL and oscillates on the cyclotron period. When the 
particles are trapped in a magnetic mirror field to a particular region o f  a field 
line, we have to introduce the sign a = ± 1 o f the parallel velocity. The bounce 
motion, at frequency cob, can be averaged to yield a second invariant provided 
i 2 > w b > IW D/Ll:

(2.16)

where
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Finally, i f  the fields are allowed to change very slowly in time over a period much 
longer than the drift o f a particle around a J surface, the energy e is no longer a 
constant o f  motion on this time scale. The total flux Ф through a drift surface,
J = const, is another adiabatic invariant:

where (a, ß) are the field line co-ordinates, В = Va X Vß.
For a plasma to be in equilibrium in a given static magnetic field, the plasma 

distribution function must be a function o f the constants o f motion, f  = f(e, ц, J).

3. A N A LO G Y  WITH MAGNETIC FIELD STRUCTURES

As an aside to the main business o f  particle motions, the structure o f magnetic 
fields can be analysed in the same fashion. Compare the general invariants for a 
divergence-free magnetic field and a Hamiltonian system, namely the flux Ф 
through an arbitrary curve C, which always passes through the same set o f field 
lines, and the action integral J round an arbitrary loop in phase space which 
always passes through the same trajectories:

This suggests that a magnetic field might be described in canonical co-ordinates:

(2.17)

J=const

(3.1)

с

У

q =  x t =  z (3.2)

The Hamiltonian may be found from the equations o f motion:

_  ЭН _  dp ЭН _  dq _  dx _  Bx
dq dt ’ Эр dt dz Bz

(3.3)

and the constraint V- В = 0. It turns out that we need to separate the field 
component By= By l (x,y,z) + Byz(x ,z) to choose the constants o f integration 
correctly when solving for H:
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As a simple example, we can now apply the Hamiltonian formalism to a stellarator 
field which we write as

We seek an adiabatic invariant ф to describe the magnetic surfaces by solving the 
Hamiltonian form o f В • Vi// = 0:

In the stellarator configuration it is usually assumed that b£, b^ are 0 (e) and 
so the form o f the surfaces is determined by

system and express it in Hamiltonian form and it shows how the discussion o f 
particle orbits relates to magnetic surfaces. Typical magnetic surfaces in an 
L =  3 stellarator are shown in Fig.l (from Ref.[7]).

4. RESONANT EFFECTS ON AD IABATIC  IN VAR IANTS

The theory o f invariants so far described shows how to average over a single 
frequency. In systems where there is more than one fundamental frequency or 
where the fundamental varies in phase space, it is possible for beats between 
the various frequencies to produce a slow variation. Terms like cosinc.^-m o^q 
arise in the series expansions and, when integrated, have a denominator ( п ц - т ц )  
which could be very small for large values o f n,m. The series can only be shown 
to be asymptotic and one simply has to stop the expansion when a small denomi
nator arises. I f  this happens in the second or third term, the whole procedure 
must be modified.

; 4
В = B0z + eb^x.y.z.e) (3.5)

where the field is principally in the z direction (z  is the unit vector) and is 
periodic in z and may be further expandable in e. The momentum and 
Hamiltonian are

p = B0y + ebI H = eb*— ebjj; =  eh (3.6)

(3.7)

The solution can be written down easily from Eq.(2.11):

ф - b * - b *  + eb x6y l+ e b * -b * ,  b * -6 y + 0(e2) (3.8)

i¿/ = e b x byl (3.9)

This work is one illustration o f  how to take a conservative ( V • В = 0)
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R tm e tre s )

FIG .l. Intersection o f  magnetic field  lines with radial planes, at field  period intervals, in a 
toroidal £ = 3 stellarator. There are 8 field  periods round the torus and the numbers indicate 
revolutions about the major axis. The splitting o f  the axis arises from  a small L - l  field  
component due to the helical windings. (From Ref.[7\)

A  nice example [8,9 ] is o f a charged particle in a uniform magnetic field 
interacting with an electrostatic plasma wave. The Hamiltonian is

H (r,p ) = (p -m i2 xÿ )2/2m + e<ï>0 sin(kz + kxx) (4.1)

where Í2 = eB/mc and Ф0 is the wave amplitude. This is first transformed to 
the action-angle co-ordinates o f the gyromotion, P0 = mvJ/2£2, with gyroradius 
p = (2Р0/тП)> :

H = P2/2m + £2P0+ e'ÊoSinikz-k^sin ф) (4.2)
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In the case o f  propagation at 45° (k = ki ), the Hamiltonian may be non- 
dimensionalized and, using a Bessel function identity, becomes

Н =  Рф+  + e  JL(p ) s in (z -ß 0 )- H 0+eH j (4.3)

The recurrence relations in (2.5) for an invariant I become

H b ln,
3i0 ai0

— -  +  p  — -  = o
Ъф d z  ’ дф dz (4.4)

Observe that the zeroth order orbit depends on P! 
The solution to 0(e) o f Eq.(4.4') is

T i T T ,  ̂ . d I 0 V  T , , sin(z-£0) 
l 0 +  elj =  I0(P ) + e ~ d ^  j l ( p )  ~  p _ L — (4.5)

The expansion clearly fails at every integral resonance P = L  unless I0 is 
chosen to vanish in the same way at each resonance. An appropriate choice is 
I0 = cos (7гР)/7г:

Io + e li^ t f  cos (тгр) -  e sin (тгр) Z sin (z 

(P -

-L0 )

L)
(4.6)

This invariant is shown in Figs 2 and 3, in the plane ф = n  for two values o f 
e and p = (1.482 
the second case.

2 2 -e and p = (1.48 -  P )\  We observe that resonances at p = 0,1 overlap strongly in

FIG.2. Surface o f  section plot o f  Ia+ e/b e = 0.025 (from Ref. [9]).
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FIG.3. Surface o f  section plot at e = 0.1. Primary resonances interact strongly. (From Ref.[9\)

FIG.4. Numerical orbit computations at e = 0.025, by Smith and Kaufman [i 0].

These curves can now be compared with the numerical orbit calculations o f 
Smith and Kaufman [10], Figs 4 and 5, at the same parameter values. The orbits 
are plotted as they intersect the plane ф = тг, and when the points lie on a smooth 

curve it is clear that the invariant is a good one. In Fig.5 the surfaces have broken 
up, leaving only islands round certain fixed points o f the phase plane. Jaeger and 
Lichtenberg [11] have examined a number o f simpler examples and distinguish 
two possible ways in which the resonant surfaces can break up (see also Ref.[ 12]).
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Ml
ft

• *>•• • «•• •/ «4 «

4
^  ’ x' ‘ x .

• у

.............. 2 < \  ¿ X
■ D

2ir
k,z

FIG.5. Surface o f  section o f  orbits showing break-up o f  primary resonances and formation o f  
n = 5 secondary resonances at e = 0.1 (from R ef.[10]l.

In the case o f an exact resonance, a 2D oscillator problem can be reduced to the 
averaged Hamiltonian:

H = К + e£2(Q2, К, P2) + 0(e2) (4.7)

where К = rH -erJ is the canonical invariant conjugate to Q, in Section 2 o f 
this paper. The remaining motion, in Q2, P2, may have an elliptic fixed point 

(Q 2,P2), where

ЭН

9Q2
=  0

ЭН
ЭР,

= 0 (4.8)

Expanding about this pointjwe get the Hamiltonian for the local motion 
ÔQ2= Q 2- Q 2, SP2= P 2- P 2:

_ _  5Q2 / V i 2
H - K +  eS2(Q2 , К, P2) + e - J 1 h - r +  6 •

SP,2 / 92s r

ap"
1+ 0 (53) (4.9)

The frequency o f these oscillations is clearly 0(e) and the ratio o f the semi-axes 
o f the orbits in the (5Q2, SP2) phase plane is

(4.10)



20 McNAMARA

I f  a high harmonic o f  these oscillations resonates with the primary oscillations 
in the (K ,Q j) phase space, the invariant is altered just as described above for 
the magnetized particle in a wave. This example was more complicated in that 
the resonance between the ф and z oscillations depended on pz. The best we 
can do with the invariant is to write the Hamiltonian as

H = ^ ( I ,P 2) + e ñ (I ,P 2,Q 2) + 0(e2) (4.11)

The expansion about an elliptic point in this case gives

5P2 д2ф Э2^  SQ I  Э2£2
H s ^  + eí2 +  ^ -  i — r  +  e —  +  e — -  ---- r  +  0(53) (4.12)

The frequency o f  the drift in the P2 ,Q2 plane is now 0(^/e), and R is also 0(>/e). 
This resonates more readily with the fundamental and it is the overlap o f  these 
secondary islands, in either case, which leads to the stochastic behaviour. The 
criterion used by Smith and Kaufman [10], based on overlap o f  the primary 
resonances, it not accurate and their computations clearly show a secondary 
chain o f  five islands round one o f  the fixed points. The start o f the required 
transformations must be done with the usual generating function approach:

s = S(Pold, Q) = -P0Qe -  cos л-p (4.13)

so that

H = pe +  I  (cos_1 *rPx)2 +  e ^  JL(P )sin (Qx-s/I-^Px-  P<A,

which makes Px= ( \ / v )  cos7rP the leading order invariant in the new co-ordinates.
I have not carried out the rest o f the analysis o f this case, but it shows how to 
bring together the elements o f the modern theory. Jaeger et al. [13] have applied 
the theory to electron cyclotron resonance heating in mirror machines. They 
show that, as the electron energy increases, the high-order (5th) resonance o f the 
bounce motion with the cyclotron heating breaks up the invariant surfaces and 
places an upper limit on the attainable electron energy.

5. JUMPS IN  AD IABATIC  IN VAR IANTS

The question arises whether the adiabatic invariant series are approximations 
to some true constant or whether they are merely approximate constants. In
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fusion plasmas we certainly want to contain the particles much longer than a 
few hundred cyclotron periods, and the question o f the convergence o f the series 
is important. There are cases o f  simple dynamical systems where an exact constant 
can be found which, on expansion in the appropriate small parameter, gives the 
adiabatic series. In general, the best that can be done is to show that the series is 
asymptotically convergent. The general invariant J, o f Eq.(2.11 ), summed to 
n terms, can be shown to vary like

A  key assumption in the whole development was that J could be expanded 
in a power series in e, which, a priori, eliminates small non-expandable terms like 
ag-b/e The magnetic moment д o f a particle displays just such jumps at each 
boúnce o f  the particle in a mirror machine [14—19]. This is easily deduced by

This equation is integrated along a field line, the zeroth-order motion o f the 
particle, to give the change in p0 :

(5.1)

examining the change in д0 over one bounce. The exact equations o f motion give

(5.2)

where

cos ф = (Vj_-VBVCvJVBl) , cos \¡JS= V -  p ,l (\ p ,)

-  = 6 X (V  X B)
p  = I vxbI/b

v =  YlCos ф êj — vx sin Vjb

(5.3)

The phases ф, ф} are rotating rapidly at the gyro frequency and the integral is 
close to zero. A  more careful analysis is done by deforming the path o f
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integration S into the complex plane to pick up the residues round the zeros o f B. 
The details vary for each plasma configuration, and so we shall display the results 
for a finite ß, P(B ) equilibrium in a mirror machine when it can be shown that

V X y ( B ) B  = 0 , /0j= ^i V " | b '

The field can then be expahded about the j th zero in the complex S-plane in 
the form

B = Bje ^ - ^  , , L = ( 2 B / ^ j  (5.5)

and the general result is

A Mo _ 47Г ve
Mo ~ У I - v / 2

Re
J i

X exp exp [—Kj/e] (5.6)

where

v  . Г  В ds Г  » 3ê2
К; -  —1 i  ------  — hl€ ds e. • -----J J  LB0 v ii J  1 ds

S = 0  0

(5.7)

These small jumps in Mo can lead to a diffusion in velocity space and rapid loss 
o f containment for the most energetic particles. The maximum energy particle 
which can be contained in a mirror machine has
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where

L 0.5 V

170 cm <Vi)Irlbounce
Г

4

x 15 (1 -R )

A L 0.83 <cos \p)
u rms

(5.9)

(A  is atomic mass, т is bounce time, M is mass, z is charge, and W is energy.)
Notice that these results arise from a non-resonant coupling between the 

bounce motion and the cyclotron motion and account for the stochastic motions 
in phase space when the adiabatic invariant has broken down. One remaining 
question is whether or not these exponentially small jumps destroy the invariance 
o f ¡J. over a long time scale even in the adiabatic region.

6. SUPERADIABATICITY

This has been investigated by Aamodt [20] and by Rosenbluth [21] for the 
case o f mirror-trapped particles in the presence o f electrostatic fluctuations near 
a harmonic o f the cyclotron frequency which produces similar jumps in ¡i. The 
key point is that jumps in p0 are periodic in \p0. Let фп be the phase on the nth 
bounce and pn the magnetic moment on the prior-to-the-nth scattering, then (5.6) 
can be rewritten as

The particle makes many gyrations between bounces and we need a simple 
model to describe фп+1 in terms o f  фп and p. Following Rosenbluth [21 ], let us 
consider a simple quadratic variation in field strength so that the cyclotron 
frequency is

¿V l= ^ n  + asin V'n (6 . 1)

Г2 = Í20( l  +s2/L2) (6.2)

Constancy o f  the total energy gives

1 2 1 ids  \ s2
2 V" = 2 \ d t )  + ^B° Z 7 (6 .3)
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where v„ is the parallel velocity at s = 0. The change in 8 ф between bounces 
is then

There are clearly many fixed points o f the mapping (6.1), (6.5) whenever 
2

Mn+1 =  ßn = (L/pm)3, i//n+| =  ipn + mn. Let us linearize the motion about one such 
point, фп = + 8\pn, цп= мр + 8ßn, to get

and we look for solutions o f the form §/лп~  Xn. For stability, IX I <  1, which gives

When this condition is met, the particle orbits do not diffuse in velocity space, owing 
to the non-adiabatic jumps in д, and the orbits are called superadiabatic. Numeri
cal calculations by Cohen [14] show that particle orbits in typical mirror fields 
are indeed superadiabatic up to about twice the energy at which the jumps could 
compete with Coulomb scattering in a fusion plasma (Eq.(5.8)). The adiabatic 
invariants o f a charged particle are indeed approximations to good constants o f 
the motion.

X,‘max 2 3

(6.4)

0

Expressing juB0 in units o f v2/2, the phase change between bounces is

(6.5)

ô* V i = 4 +aS^n

(6 .6)

Eliminating 8фп gives

- ^ ) W  + 5Mn-l = 0

P H

(6.7)

2
3

(6.8)
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Note added in proof:

The Lie transform methods mentioned in Section 1 have been applied to the 
resonant problems described here and in generalizing the invariants o f  Section 2 [22].
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Abstract

NUM ERICAL SO LUTION  O F THE FO KKER-PLA N CK EQUATION S F O R  A M U LTI
SPEC IES PLASMA.

Tw o numerical models used for studying collisional multi-species plasmas are described. 
The m athematical model is the Boltzm ann kinetic equation with Fokker-Planck collision terms. 
A one-dimensional code and a two-dimensional code, used for the solution o f the time- 
dependent Fokker-Planck equations for ion and electron distribution functions in velocity space, 
are described. The required equations and boundary conditions are derived and numerical 
techniques for their solution are givea

1. INTRODUCTION

In the simulation of magnetically confined plasmas where the Ions 

are not Maxvelllan and where a knowledge of the distribution functions 

is important, kinetic equations must Ъе solved. The proposition that 
a stable mirror plasma will yield net thermonuclear power depends on 

the rate at which particles are lost out of the ends of the devicê. At 

number densities and energies typical of mirror machines, the end 

losses are due ideally to the scattering of charged particles into 
the loss cones In velocity space by classical Coulomb collisions. The

* Work performed under the auspices o f U SERD A , Contract No. W -7405-Eng-48.
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kinetic equation describing this process is the Boltzmann equation 

with Fokker-Planck collision terms [l, 2].

The use of this equation is not restricted to mirror systems.

The heating of plasmas by energetic neutral beams, the thermalization 

of a-particles in DT plasmas, the study of runaway electrons and ions 

in tokamaks, and the performance of two-energy component fusion reac

tors are other examples where the solution of the Fokker-Planck equa

tion is required [3].
The problem is to solve a nonlinear partial differential equation 

for the distribution function of each charged species in the plasma, 

as functions of seven independent variables (three spatial coordinates, 

three velocity coordinates, and time). Such an equation, even for a 

single species, exceeds the capability of any present computer, so 

several simplifying assumptions are therefore required to treat the 

problem. Atypical approximations that are made in present-day codes 

are to neglect spatial dependence and to assume that the distribution 

functions are azimuthally invariant in velocity space (about the direc

tion of the magnetic field). These assumptions reduce the number of 

Independent variables to three— two velocity space coordinates, v and 

6; the speed and pitch angle; and the time, t. Even with these basic 

assumptions there has been an evolution of numerical Fokker-Planck 

calculations for the past fifteen years [ 3]-
A multi-species code [2] was developed in order to study D-T and 

and D-^He mirror reactors, Including the effects of reaction products. 

The principal assumptions of this code are that the "Fosenbluth poten

tials" (see Section 2) are isotropic and that the distribution functions 

can be represented by their lovest angular eigenfunction. The resulting 

set of coupled equations for f&(v,t) are then solved numerically, using 

an implicit finlte-difference scheme described In Section 3. An exten-
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sive parameter study [2] was conducted yielding values of the confinement 

parameter пт and the figure of merit Q (the ratio of thermonuclear power 

to injected power) as a function of mirror ratio and injection energy.

In Section U we describe a highly versatile, two-dimensional multi- 

species code in vhich the ion kinetic equations are solved by finite- 

difference methods on a two-dimensional (v,6) domain. The electron 

distribution function is still represented using the lowest angular 

eigenfunction (isotropic in a full velocity space); hence, a one-dimensional 

electron kinetic equation Is solved. In Ref. [3] we give a variety of 

applications of this code and deecrlbe diagnostics that have been added 

for the special problems. For mirror systems with beam injection, we 

find values of the containment parameter пт as much as UOj higher than 

those given by the one-dimensional Fokker-Planck code. We also consider - 

two-component toroidal systems and calculate the energy multiplication 

factor for a number of different scenarios.

2. MULTI-SPECIES FOKKER-PLANCK EQUATIONS

The appropriate kinetic equations are Boltzmann equations with 

Fokker-Planck collision terns, often referred to simply as Fokker- 
Planck equations:

Here f is the distribution function in 6-dimensional phase space for 
particles of species a; S& is the source teim; (àf ̂/àt)̂  is the colli
sion tens: and L contains loss terms, a

The Fokker-Planck collision term for an inverse-square force was 

derived by Rosenbluth et al. [4] in the form

(1)

2 à v ^ j
( 2 )



where Г = kirZ ^e^/m 2. In the present work we write the "Rosenbluth a a &

potentials" [2 ]

2
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ga “ T i r )  1п Л а ъ / ^ (" )|7' 7 ’ ) l
dv' (3 )

b > Za

ha = lnAab/ fb("')l7 - (U)
Ъ ^b

- 0  1п Л аЪ/ у " ' ) 17 - vM -1d

The transformation of Eq. (2) to spherical polar coordinates 

(v, 6, ф) in velocity space has Ъееп given by Rosenbluth et al. [U]. 

With our assumption of azimuthal symmetry, the resulting distribution 

functions are of the form f&(v, y, t), where y = cos0 and v = |v|.

The equation for each species is
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The functions g& and h&, defined by Eqs (3 ) and (h ), can Ъе 
represented Ъу expansions in Legendre polynomials (Rosenbluth et al. [1*]). 

For this purpose we let
C D

fa(v„ , t ) = £  Vj(vft)Pj(n) (6 )
j=0

where

r +1V*(v,t) = -J-g+ 1 j fa(v,u,t)PJ(n)dli (7)

The expansions for g and h are 
& &

°° I z f
ga(v,u,t) = Y , Y , U  I *  AabBÏ(v't)PJ(ll) (8 )

J=0 b \ a j

ba(v,n,t) = Y  Y  ------~ (  'to №
J=0 b “b \ \  /

where

ft 1иг Г f V (v ' ï ^  a ^  a 1‘j'iJTlLio -7Л- Vv'-t)4ï' Vjlv.tMvJ (10)

«иг Г f V ( v ' ) J 'Æ /  J -  1/2  ( v ' ) 2 \ _ 

il/.

( V ) J - 3 ^ J + 3/2 ( V )  /  J J

в1 e * 2

( 11)

In the computations ene takes a finite number of terms in the Legendre

expansions of g„ and h .ft &

Loss Cone Domain. Amblpolar Potential
Since examples studied are devoted to the problem of plasma confine

ment within systems of magnetic mirrors, we consider the mathematical 

description of such systems.
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The loss cone angle is (Spitzer [5 ])

(12)

where RB * B ^ /B fz); is the magnetic field at the mirror; and B (z )  is 

the magnetic field at the interior point being considered. A particle 
whose angle in velocity space is less than 0^с will be immediately 

lost from the mirror system. 0^  is independent of velocity as well 

as particle mass and charge. Eq. (12) is derived under the assumption 

that no electrostatic potential exists, and 6^  is the actual loss 

angle only under that condition.

However, because of their greater mobility, the scattering rate of 

electrons will be greater than that of ions, and more electrons than 

ions will tend to leak out of the ends of the device. Hence, an 

ambipolar potential will build up, being greatest at the center and 

decreasing towards the ends. The fact that this potential is established 

leads to a fundamental change in the loss characteristics for the two 

types of particles. The loss regions are then defined by a loss angle 

which is a function of speed and charge. If Z&e is charge and ф is 

electrostatic potential, the loss angle is given by

is the "effective" mirror ratio.

Equation (13) approaches Eq. (12) asymptotically aev + «i For ions, 
the right hand side of Eq. (13) can exceed unity; no ion in such a 

velocity regime can be contained. Conversely, for electrons, this term 
can be less'thán zero; all électrons at such velocities will be electro

statically trapped. The loss region for ions is transformed from a cone

sin2 0LC = i/Ra; (13)
vhere л

(HO
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into a hyperboloid of one sheet. Its minimum radius occurs at

0 = it/ 2 ,  and is equal to the minimum ion velocity possible for confine

ment. The electron loss region is transformed into a hyperboloid of 

two sheets.

3. SOLUTION OF THE ONE-DIMENSIONAL MULTI-SPECIES EQUATIONS

In this section we describe a numerical model which has proved 

very useful [2], in which we assume that the Rosenbluth potentials 

given by Eqs (8 ) and (9) are isotropic , i.e.

3g 3h
0 (15)

Эу Эр

With this assumption Eq. (5) becomes

L ü ä » . 1 1
Г àt 7 â va

P S T L
9 Ъ t  àf

(1  - И2 ) — ф  - 1*VL — -  - 2 f
ân ôn

a

1 à
~2 ~v àv

The above equation is separable, and if we let f (v,n,t) = U (v,a a
then
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We obtain an eigenvalue problem for

d M  d M

(1  - ц ) -Я м  —  + ЛаМа = 0
dix ф

( 16)

which is Legendre fs equation on the domain - cos0a < p. < cos0a > vhereLC " LCa0 is the loss cone angle for species a. For each eigenvalue Л we LC ä
have an equation of the form Jin the following we have replaced U&(v,t) 

by fa(v,t)j s

1 ô f  l à

Г dt а
“ 5 “v dv

Л àg

y àv dv } 2v àv \ a dv

T ? dv

The functions, h (v,t) and g_(v,t) are given by the equations

dv*

00

+ f  ft(v',t)v*dv4
V •

I v'̂ dv*

(IT)

(18)

(19)

The summations are taken over all the species of particles being con

sidered, including type a. If ve use Eqs (18) and (19) to evaluate
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the coefficients of Eq.. (17), then the-equation for f&(v,t) becomes

àfa 1 à_r
àt % 2 á v P

. f + ß a a a èv
7 a f  T  a ( 20)

vhere

= Wï\ a a

ß =Ha a

2  CD

Ф)
Ç ( r )  1“ 'l. b [ j ; / o fb(v' ' t)v'',av' * j j  fb(v,' t >v'

= £ tor* Ç f t)  ” 4 i  11 ' 5

— J  f „ ( V , t ) v 'd ï '

The number density of particles of type a is
<

na ( t )  = hvJ f a (v ,t )v Ädv (21)

The last term on the right of Eq. (20) is the particle loss tern due 

to scattering into the loss cone. If -  0 then n&(t) should remain 

constant in time,which gives the appropriate boundary conditions for 

the solution of Eq. (20) , i.e.

dn r 00 1 è
— ~ = ^  Г  —
dt J  - v àv

a  f  + ß а а а H i
ôv

2 ,v dv = О

is satisfied by the conditions
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for t > 0, where 0 < v <v is the domain of Eq. (20). At v = 0 »» _  _  m a x

Eq. (22) is consistent with 3f /3v = 0, since lim a (v)/ß (v) = 0.ft л ft &
In multispecies problems with an ambipolar potential defined, the

effective velocity domain will Ъе the interval [v . , v _]. Inmin шах
this case v . will depend on the ion species and will equal zero min
for the electrons.

It is convenient to introduce dimensionless variables. Let

x = v/vq, where vQ is a characteristic velocity, т = t/t^ where t^ is

a characteristic time, and let T = (b trv ^ /к )f , where& u a ft

(The noitnalizing constants K& are determined by the initial density and 

distribution for each species.) We generally take t^ to be defined by

v-*- 0

0

Ъ 2 ^the electron equation, i.e. tN = (2vQ /Ke)(me /We ).

We define the functionals

(23)
x

X

(2k)
0

x
(25)

0

In terms of the dimensionless variables, Eq. (20) becomes
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where

Aa =
V a

V a y / f b

ô3” h \ Za

E a /

2
Кь m л.ab —  E(F ) + —  M(fJ  

3x 3

Ca =
V a \  Г / 4 ]

231 Ъ  \Za j
ln Лab

2x
N(Fb ) -  - g  В(РЪ) + -  М(РЪ)

To the right side of Eq. (26) ve have added a source tern D&(x,t) for 
each species.

Equation (26) is a system of coupled partial differential equations. 

For each particle species, a, we have an equation corresponding to A&, 

the eigenvalue of Eq. (l6). In principle we could consider several 

eigenvalues for each species, hut in this paper we have used only the 

lowest eigenvalue corresponding to the first normal mode. Hence we 

have one equation for each species. In solving the system given hy 

Eq. (26) we consider it as a vector equation of the form

ÔF 1 ÔG С
= 2 F + D

Эт x àx x (27)

where

Fi
j G = AF + В

âF

Эх

and А, В, С are diagonal p x p matrices and D is the source vector. 

Without source and loss terms, Eq. (27) becomes



We see that this equation is in conservation form (divergence of a flux), 

which is consistent with the correct boundary conditions.
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We solve Eq- (2 7) "by finite-difference methods. On the domain
0 < X < x_, t > 0 , we have a finite-difference mesh denoted by x,,

—  J  —  Ü

. The x spacing is variable andJ = 0, • • •, J and tn, n = 0, 1, 2, ••

we define AXj+1/2 = xj+1 - ^ - 1 /2 = xj ‘'XJ-1' = I X̂J+1 " XJ-1^‘
We approximate Eq. (2 7) by the following implicit difference equation:

_n+l n 

At

- . pn+l n+1 pn+l
_  У * / ?  “ + Dn+1
x 2 Дх x 2 J J

L J J 3

+ ( 1 - p)
1 G

~ 5 
LXJ

(29)

where

Gj+l/ 2  = I V l / 2(Fj+l + + BJ+l/ 2  ^  " J
3*1/2

°j-l/2 - I AJ-l/2 (lJ + Fj-1) + Bj-l/2 J 1
J-l/2

Por numerical stability we must have l/ 2  < p < 1; we usually take 

p = 1. Without source and loes tenas, i.e. С1? = D° = 0 for all J and
U J

n, we have

!РЧг*Ьч-
for all n, independent of the mesh spacing, as long as = g” * 0 ,
for all n. This condition is the boundary condition given by Eq* (22). 

Thus we see that our difference scheme rigorously conserves particle 

density In the absence of source and loss terms.



In order to solve the difference equations given by Eq. (29), we 

write it as the linear algebraic system:
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«  * (30)

J = 1, • • •, J - 1, where

„n+l _n+l

1 1 p an+l _

1 ” 2J A t x ¿
J

1 I А ^ , / л - А “+^  Bn+1i+Ф  '  W 2 . â / 2 .
i \  2 ^j+i/s

¡S&.1-
* y i/ 2  I

c“+1

. i .n+l „n+l
,”•* " . J- . îtitë . ,!ы&. 

J *j “ i \  2 Лх
J-i/2 ;

(1 - p) 1 I a“ ., /„ Bn

L XJ
Ш / l  + J+ V .?.., 

J+1/2JДх,I 2 Ax 
J \

(1  - P )

+ Т Г
' 1 K + l / 2  - A;-1/2 .  5 + l/ S L  .  ^ - 1 / 2 .1 

\ 2 ^ J + i/ a

+ F11 
J -l

(X - P ) 1 I A1
. _ L L ! J d £  +

L XJ

„П »n

+ pd"+1 + (1 * p)Dj

In order to linearize the system (3 0) we extrapolate the a , ß, 7 defined 
above to the new time step , n + 1, using their values at n and n - 1. The 

method used to solve Eq. (30) is the standard trldlagonal method given 

by RICHTMÏER and MORTON [6 ].



At every time step we calculate the number density and average 
energy of each type of particle from the equations:

na(T> = V 2a<T>
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where

r®
1^а(т) = J  F&(x,T)x2dx

0

х1*а ( т ) =J  ^ (x .O x ^ d x

The coefficient of the scattering loss term, Л&, can he obtained

by solving the eigenvalue problem, Eq. (l6), for a given 0Tn. For the
IiC

eigenvalue of the Legendre equation corresponding to the first normal 

mode we shall use the approximate value

Aa = (log1Q Ea ) ' 1 (3 1 )

where Rft is the effective mirror ratio for particles of type à and 
depends on the ambipolar potential еФ.

For electrons we have

where R = Bmax/BQ, еФ = | For ions we have

I v *  \_1
\  = н 1 + T ------ 5  (33)

V i v
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The procedure for determining еФ follows. Let 

Q‘(t) = n (т)

Q+(t) = £  Z ^ t t )  (b 4 e)

(the sum taken over the ion species). At every time step, Q and Q are 

computed and the difference (Q+ - Q*)/q~ is compared to a specified
small number. If the difference exceeds this number, the v is in-cr
creased by an amount Avcr and the time step is repeated. This process 

is repeated until the condition is satisfied. The tern Ле is then

г r x M -

logio \ R i - iL 1 1 ,

X  >  X .cr

X  <  X—  cr

(3*0

where v.x = v . In the ion equations for those values of x such0 cr cr
that x < (Z m /m )1 /̂2fl/(R - l)1 2̂^  , we set the corresponding values—  a e a l J cr
of the distribution function Fa(x, t )  equal to zero. For 

x > (ZameA>a)1/2[l/(R - l)1/2]x

Л = a lo8l 0< R

This separated approach can be generalized in the following sense. 

We represent the solutions of Eq. (5) by the orthogonal series

(36)
fc=l

where M^(u) are Legendre functions with appropriate boundary conditions.

We relax condition (15) and expand the Rosenbluth potentials in a Legendre
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polynomial series. We then obtain a system of equations in the form 

N
, / _ . 3U* \ _ for к = 1, • • • , N

£=1
i _  J L  I a  TTa  ^  о  a  3U)l \ I I a

2 3v l“ki. г екг 3v / “ г гv > ▼
( З Т )

A detailed description of this formulation appears in Killeen 

et al. [3] •

1». SOLUTION OF THE MULTI-SPECIES EQUATIONS IN A TWO-DIMENSIONAL 
VELOCITY SPACE

Equation (5) in (v,0) coordinates, written in conservative fom, is

1  [Щ  , i
r. W c  ’ ’

ÔG 1 ЭН

V  Эу V  sin0 Э0
(38)

where
ôf àf

G = A f + B —  + C — - a a a a ^  a ô0 ( 39)

àf ôf
H = D f + E a a a a

a n a + F
dv Ô0

(UO)

and

v2 A 2 ôha 1 à2ga 1 * 4A = —
a 2 ôv'1 dvc àv àv v Э0С 2 àvàâ̂

cot0 àg cot0 à g _____ _a ___  a
v Э0 2 àvd0 ( l* l )

2 .2 v Э g
B. = —

2 àv
(U2)

1 \  1 ô 8a 

a 2v Э0 2 dvà0
(U3)
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* x 2sinö d g  sine d g  sine à g°в °Û WQ ôg0

Da 2v¿ ~Ъ? 2 dv de V dvde 2v sin0 de

cose d2g

2v de
a - sine a

dh _а
de

e = sineа
1 & a  | 1 á «а  

2v de 2 dvde

sine d go sine dg
_ а  аF = — я---ж- + -- ----
a 2V de 2v àv

(W )

(1*5)

(U6)

The functions g and h are given Ъу Eqs (8 ) and (9). a a
Equation (38)is integrated using the method of splitting, or frac

tional timesteps. We first advance
1 if 1 3G  a _ _a
Г 3t v 3v a

using an implicit difference algorithm [6 ], and then advance
1 3f ЭН

(VT)

(U8)
Г 3t v sin0 30 a

in an analogous manner.

Equation (1*7) is differenced as follows: 

A“  -  A“  , f * *1 ,J  i , j  = i . J + r i . J + l  "1,.1+11..1-1

24i AvjГ At a

¡y Av

2
2v. Av

j .

j+ 1/2

j + i v l + i . j + i  i - i , . i + i ;

Av
j - 1/2

где.

cn f f 11 -  f 11 V 
_ l . J - l *  1 + l . J - l  I l - l , . 1 - i j

2Л0.
(1*9)

Here, f^ = f(v. 0. nAt). J- » J J » * »



By rearranging terms, Eq. (1*9) may be put into the tri-diagonal

form:

"“l.J^.J+l + ^i.J^.J ‘ ^i.j^.J-l = 6i,j (50)

We see that the terms of mixed second derivative type may not be written 

fully implicitly if ve wish to maintain a tri-diagonal form. Equation 
(1*8 ) is integrated in a similar manner, with the roles of v and 0 

reversed.

The direct two-dimensional approach for obtaining the ion velocity- 

space distributions in mirror-confined plasmas can be used to analyse 

many different physical situations which cannot be studied with the 

one-dimensional lowest-normal-mode approach described in Section 3.

In particular, transient plasmas [3] typically encountered in mirror 

experiments may undergo rapid changes which would not allov the establish

ment of a lowest-normal-mode ion distribution. Furthermore, the injection 

of well collimated neutral beams gives rise to ion sources that are 

sharply peaked in velocity space so that many normal modes would be 

required for adequate representation.

The two-dimensional multi-species Fokker-Planck code is a useful 

tool for studying the physics involved in the themalization of directed 

monoenergetic neutral beams injected Into a dense t'okamak plasma. The 

essential physics of a two-component toroidal reactor (TCT) was first 

described by Dawson et al. [7]. Variations and refinements of this 

concept were given by Furth and Jassby [8]. The authorized construc
tion of a "breakeven" TCT experiment has given added Impetus to the 

search for a detailed understanding of the plasma physics Involved In 
the design of such a system.

An idealized model in which the plasma is assumed to be spatially 

uniform over same finite toroidal volume allows one to analyse the
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system in terms of velocity-space varieties only. In particular, elec

tron and ion distribution functions are obtained from solutions of the 

time-dependent velocity-space Fokker-Planck equations. These solutions 

can be used to compute the energy multiplication factor

(Energy from Fusion Reactions)
Q = ------------------------------  (5l)

(Energy In the Injected Deuterons)

-which serves as the figure of merit for a pulsed TCT system [3].

Several features of the Fokker-Planck model are especially appro

priate for representing physically significant effects in a TCT. The

nonlinear nature of the kinetic equations ensures that the collislonal 

interaction of all species, including self-interactions, is properly 
accounted for regardless of the form of the distribution functions.

Alpha particles and impurity ions are treated on an equal footing with 

the deuterium and tritium ions since there is no inherent restriction 

on the number of species vhlch can be handled in the code. Major radius 

compression is a useful technique for supplementing neutral beam injec

tion in toroidal plasmas, and the two-dimensional nature of our velocity 

space allows us to accurately account for distortions of the distribu

tion functions duè to this anisotropic driving force.

In axisynmetric toroidal systems the constants of the particle 

motion are
2mv^

---- = magnetic moment (5 2)
2B

mV||R = toroidal angular momentum (5 3)

where R is the major radius of the torus. For a time-varying major 

radius we derive (v(|, v ) by taking the time derivative of these equa
tions, obtaining
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1 В
+ 2 V1 В

V|| =  -  v u  g
(55)

(5U)

Since В is essentially Just the toroidal field strength, it varies 

inversely with R, yielding

В
В

H
R

(56)

With these resulte the Fokker-Planck equation becomes

ôf R 
3t + R + S + L (57)

where (àf/àt)c is given by Eq. (3 8)- For isotropic electrons we have

àf _e

ôt
1 Л Л У - , ( Ц
\ 3 bv I  R \ b t ) c

(58)

The source tern S in Eq. (l) is of the form

Sa(v,0,t) = ^  Ja(t) Sa(v,0) Sgji(t) (59)

where the shape function Sa(v,0) is a Gaussian in v and cos0 of den

sity 1 , is either 0 or 1 , and jf(t) is a current.
8 0>

The loss term L may combine several loss processes. Losses due a
to charge exchange with the beam are expressed as

• [ Z  Dab6ï ’^ ] fa(v' 0̂ (6 0)

where the quantities D . are constant parameters. The presence of the 
&D

V» 9vectors S ’ allows the whole charge-exchange process to be implemented s
as a unit; that is, a given charge-exchange term along with its corre

sponding source tenn depends on the same temporal function (̂t).



The effects of finite particle and energy confinement times in a 

tokamak are incorporated by adding a contribution to L& of the form

/1 1 \ v^f (v,0,t)'
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T fa(v,e,t) 1 à
h = - -------------- + —к —

T  V  Ô V \T T I\ e p ;
(6l)

where т and т are particle and energy confinement times, respectively, p e
If we ignore all other terms in Eq. (l) and compute moments, we find

àn n
(62)

d t  TP

à(n Ëo) n E
— ü  = .  _ а - г  (б з )

à t  Te

In problems where one wants to observe the relaxation of a distribution 

in the absence of a loss cone, or where one assumes that ions in a loss 

cone domain are not lost instantly, full velocity space boundary conditions 

are applied, namely:

(a) f(v=O,0) is independent of 0 (61»)

(b) (v=O,0=ir/2) = 0 (65)

(c) ff (v,0=O) = g  (v,0=ir) = 0 (6 6)

The first condition is a result of continuity at v=0. The second and 

third conditions are a result of the requirement that the distribution 
be azimithally symmetric.
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EQUILIBRIUM RELATIONS IN THE PRESENCE 
OF ARBITRARY PLASMA DIFFUSION 
IN AXISYMMETRIC CONFIGURATIONS*

D. PFIRSCH
Max-Planck-Institut für Plasmaphysik,
Garching,
Federal Republic o f Germany 

Abstract

EQ U ILIBRIU M  RELA TIO N S IN TH E PRESEN C E O F A R B IT R A R Y  PLASM A D IFFU SIO N  
IN A X ISY M M ETR IC  CO N FIGURATIO N S.

A condition for general axisym m etric diffusive equilibria that relates the outward 
diffusion to  the toroidal current density is derived. In an approxim ate version, it requires that 
some effective diffusion velocity vD* must not exceed the poloidal magnetic diffusion velocity vm 
Relevant consequences follow in the anomalous diffusion regime if  diffusion is caused by an 
anomalous parallel electron viscosity instead o f an anomalous perpendicular resistivity. In  the 
form er case, vD* equals the real diffusion velocity vp, and an anomalous bootstrap current 
arises which leads to rather low upper limits for ßp. I f  the usual trapped ion or Bohm  diffusion 
is assumed to  be caused by enhanced viscosity, no stationary high-temperature equilibria would 
be possible in a system governed by the appropriate diffusion law.

1. INTRODUCTORY REMARKS

Essentially, this paper reviews a discussion by K. Borrass and D. Pfirsch 
(Max-Planck-Institut für Plasmaphysik Rep. IPP 6/155 o f March 1977), and to 
elucidate the questions considered, two introductory remarks are made:

A. A  self-consistent macroscopic theory using, among others, the following set 
o f equations

!p = î  j  x B, V ‘ j = 0 ,  E + ^ v x B =  g • j

leads uniquely to Pfirsch-Schliiter diffusion. Present-day tokamak transport codes 
are therefore only capable o f describing neoclassical or anomalous diffusion within

* Work performed under the terms o f the agreement on association between the Max- 
Planck-Institut für Plasmaphysik and Euratom .
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TABLE I. ESTIMATES OF RATIO  vD/vm FOR VARIOUS CASES

50 PFIRSCH

a
(cm )

Ro
(cm )

T
(keV)

n
(cm ’ 3)

Tp
(seconds) VD/Vm

I 10 70 1 2 X 1013 0 .05 1

II 45 120 2.5 5 X 1 0 13 0.1 50

III 4 00 1000 15 5 X 1013 2 50 0 0

the framework o f a macroscopic theory if some o f the above equations are modi
fied. Obviously, only Ohm’s law allows major changes without influencing the 
fundamental pressure balance relation. To  obtain the freedom o f choosing any 
diffusion velocity, these codes therefore only use the toroidal component o f 
Ohm’s law and, furthermore, neglect the v X В term, i.e. Ohm’s law is reduced in 
these codes to the equation

where ф is the toroidal angle.
Neglecting the v X B  term means neglecting the convective transport o f the 

magnetic field. A  relation o f the form E = leads, on the other hand, to 
magnetic field diffusion with a velocity

q c 2 
v  «  —  

m 4ira

where a is a typical length for the magnetic field variation due to currents. In 
the following, a is chosen as the minor plasma radius.

Neglecting the v X В term is therefore only justified i f  the convective field 
transport is small compared to field diffusion. The convective transport occurs 
with the plasma diffusion velocity v p . Hence we arrive at the condition vp <§ vm.

Table I contains estimates o f the ratio vo/vm for various cases according to 
present-day code calculations. The resistivity is assumed to be normal. R 0 is the 
major radius, and rp is the particle confinement time. The values o f vt)/vm 
indicate that the present-day codes can probably only be applied to smaller 
experiments i f  anomalous diffusion is not caused by anomalous resistivity.

B. Plasma diffusion through a magnetic field means plasma motion relative to 
the magnetic field. Stationary conditions are therefore only possible i f  particle
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diffusion equals magnetic field diffusion. Since the scale length for the magnetic 
field can be larger than the plasma radius a, we must have

ПС2
VD "  Vm “  4тга

With

2v

m ß „ 2

where vci is the classical diffusion velocity in plane geometry, the inequality yields

2v i 
ß -S — —

VD

A  few examples may illustrate this result:

(a) Neoclassical banana diffusion is given by 

v D ~ q 2 A3^ 2 v  q ¡= s a fe t y  fa c t o r ,  A = R0/a

The ß relation leads to

ß -!—  o r  ß ~ A1^ 2
max q2A3/2 P max

This result is known to be a consequence o f the bootstrap current.

(b ) Pseudoclassical diffusion is described by 

v D ~ q2A2

leading to

ß ~ 1 
p max

(c) Bohm diffusion does not lead directly to a ß limit. Because o f the special 
form o f VD we obtain a temperature limit
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I f  Bohm diffusion were to be formally inserted in the right-hand side o f the 
ß relation with T  = 10 keV, В = 40 kg and n = 1014, it would be found that

which, o f course, is not a self-consistent result. It illustrates, however, in addition 
to the correct temperature limitation, the severe consequences o f the relation 
VD <  vm.

The next sections contain a rigorous treatment o f these problems for 
axisymmetric configurations.

2. GLOBAL RELATIONS

We start with the stationary momentum equation for electrons, which can 
be derived from an exact Fokker-Planck equation:

- e (n E + —  nv x B) = R + R .— с — —ее —e i

In this equation n, nv, E, В can be considered as average quantities in the case o f
turbulent plasmas. Ree and R ei describe all kinds o f momentum exchange among 
the electrons themselves and between electrons and ions, including pressure 
gradients, inertial terms or turbulent terms such as бп 5E and S (nv)X SB. 
Subscripts e for electrons are omitted if not needed.

There can be many species o f ions as well as neutrals. An important relation 
follows from the momentum equation by calculating the rate equation for the 
axial component o f the total angular momentum o f the electrons, which is

- / e R (nE, + -  m T  В ) d3x = / R (R A + R . J  d3xJ Ф с Ф p J ееф е1ф
plasma plasma

R is the major radius, p denotes the poloidal and ф the toroidal component and 
ф the component perpendicular to poloidal flux surfaces:)// = const, when 2ir\p is 
the poloidal flux.

From axisymmetry it follows that

/ R R . d3x = 0 J ееф

since momentum exchange among the electrons themselves cannot change their 
total angular momentum.
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We now use the following co-ordinates:

Ф, 1 = length on ф = const in the poloidal direction, and ф. 

Observing that

В = Уф x Уф, I Уф I = 4  
—p К

we can express the volume integration by

/ d3x ... = / dф I dl 2irR — !—  . . . = / dф 2n Í 4“
J I  I’ *I J  i »

Here it is assumed for convenience that Bp > 0  holds, which does not mean a 
restriction for tokamak equilibria.

The angular momentum relation, divided by the charge e, then reads

/dф L Ф d l 2irR n + ф d l 2irR nvA + ф d l 2irR =[  j  d l 2irR n + j  d l 2ttR

plasma ф ф ф

The expression

j  d l 27rR nv\¡> = Гф

occurring in this relation is the total electron flux through a flux surface ф =  const.
Writing down similar relations for all kinds o f particle species contained in 

the plasma, and multiplying each relation again by the corresponding charge and 
summing up all these relations, leads to

J  I e гф = 0
plasma

This holds because the momentum exchange between different particle species 
cannot change the total angular momentum o f the plasma, which makes the third 
term vanish when summed over all particle species. The first term cancels out if  
the plasma is neutral as a whole. The latter can be relaxed i f  wall interaction is 
taken into account. This result means that a necessary condition for ambipolar 
diffusion is always fulfilled which, however, might for self-consistency imply the 
existence o f radial electric fields.
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We now discuss in more detail the angular momentum relation for the elec
trons. We observe first that it exhibits the fact that there are only three causes 
for a change o f the total angular momentum o f the electrons: an external electric 
field Eф leading to the first term; a poloidal field leading to the term, which 
means partly interaction with an external field and partly a non-stochastic inter
action with the other particle species; and momentum exchange with other 
particle species given by the third term.

The first term can be considered as a generalized Ware effect. In equilibrium 
it must have the opposite sign o f the Rei0  term because the electron charge is 
negative. The same holds for Г^,. Anomalous therefore means that Re¡^ must 
also be anomalous.

Since Rgi describes the momentum exchange between electrons and other 
particles, it must somehow be related to the electrical resistance. Hence, if  the 
concept o f resistivity is still applicable, we can write

= -  e n q • j_ = -ёш (лп  ¿¡i + Пх Î.J.)

Anomalous therefore means anomalous (T?-j)0 .
To  draw conclusions from this, we note that experiments indicate that in 

the usual low electron drift case, щ  is close to its classical value; follows from 
the pressure balance equation as

cVp x В 
--------

B2

Diffusion, being greater than classical Pfirsch-Schlüter diffusion, therefore requires 
either an enhanced perpendicular resistivity or a large bootstrap current. In the 
first case, experiments would demand 17̂  to be a few thousand times 77ц. There 
are, however, arguments that an enhanced electron-electron collision frequency 
should be responsible for the observed diffusion, in which case should remain 
essentially normal and thus

' Р ф  c n"  ^Чф

Assuming this to be true, we find, in the sense o f mean values over the whole 
plasma,

c n»  ^»ф 
~ В

Here the Ware effect is neglected; with given v^ it would increase the necessary 
j||0 . With this current, Maxwell’s equation for the poloidal field reads, in the
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large aspect ratio limit,

1 3 /■ „  т. ;  «  4тт
r  3r p с иф 2n P Ф

c nn

From this we obtain by order o f magnitude

2 2 v  1
с Пк _ c lv  »  ■ -  =  V  ~  -------- —

ф 4ïïà тп ß

This is the relation stated in the second Introductory Remark.

3. LO CAL RELATIONS

I f  one can neglect the angular momentum transport through the magnetic 
surfaces compared with the angular momentum exchange between the electrons 
and the other particles, i.e. if

holds, where ye¡ is an effective electron-ion collision frequency including turbulent 
effects, then we can drop the ф integration in the global angular momentum 
relation. A  first consequence o f this local relation is then that ambipolarity holds 
locally. The approximation allows the presence o f space charges in the sense o f

quasi-neutrality, i.e. | 2  en| ^  en must be fulfilled.

I f  we express R ej by R ej = — еп (т^ ), the new relation reads

/ cE,t, C (H  * i)r f,i dl 2irRn j-2- + Г - X dl 2ïïR n ---g----2- = 0
, p i p

We shall now use this equation together with two other relations in order to 
derive an equation for analogous to the formula for classical diffusion. To  this 
end we have to eliminate j_ from the above formula, in which

В В В 2 В 2

<а • i ) *  -  -  « * >  j p *  к  *  п ,  -4 ->

contains the two components j p and o f the current density.
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The first additional relation we shall use is the equation for the pressure 
balance:

VP = \  Í  x I

It is assumed here that all deviations o f the total pressure tensor from its trace p 
can be neglected. The pressure tensor itself can be assumed to contain all kinds 
o f inertial and turbulent contributions; p must then be a function o f ф alone, 
which leads to

cRB 4?- = j  Bp cfy p Ф Ф P

This equation allows us to eliminate jф, for instance. To eliminate j p too we 
multiply the electron momentum equation by B. Writing

R = Vp + V • П 
ее  e =e

with Tr n e = 0, we obtain

Эр Эф
о = Б _ £  -  en E , В, + en -Г7  В + В • V • П

р Э1 Ф Ф 31 р — =е

+ en п., ( j ,  В + j  В )
"  Ф Ф P Р

The unknown electric potential Ф for the poloidal field disappears i f  one operates 
on this equation by

M S - -  
i  p

or, i f  one assumes that n = n(i//), just

in which latter case pe also drops out.
I f  one again eliminates j^ by using the pressure balance equation, a second 

equation is arrived at containing j p in an integral over a magnetic surface. One
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can now eliminate j p between these two equations by using the relation which 
holds for axisymmetric configurations, namely

Thus, jp can be expressed by Bp times a function o f ф alone and this function 
can be eliminated between our two equations. This yields the envisaged relation 
for . If, besides n = n(i^),one also assumes that г?ц = Г1\\(Ф) and writes

where U is the space-independent loop voltage, then one finds that

<A> is therefore a mean value o f A  over a magnetic surface.
The various terms in this equation have the following meaning:

The last term is ‘classical’ diffusion; the last-but-one term is the 
Pfirsch-Schlüter correction; the first term is a pinch effect; and 
the second term is the possibly dominant term resulting from an 
effective parallel viscosity o f the electrons. This term is 
responsible, for instance, for neoclassical diffusion.

Вф =  f ( t |0 Уф

from which it follows that

E'Ф
U
2irR

Г
U < В • V • П >= cn —

v '  (lio 2ir \<B2> =e

In this equation it holds that

A

Let us finally relate these results to the 0-component o f Ohm’s law. To this 
end we eliminate by introducing j^ again. The relation we arrive at is:
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with

- r r i  < в • v ■ п >

-  Пис2п

r2 b 2

Г| is equal to except for the terms containing 77j_ and U. Thus, i f  electron 
viscosity dominates, we have ^ Г ф .  The inequality then requires the existence 
o f an anomalous bootstrap current, which leads to the former ß limitation.

For large aspect ratio the new relation reads simply with [jф]: = <Rj0 >/Ro

in present-day transport codes depends on the validity o f vd ^ v m rather than 

v d  <  vm, as was heuristically stated in the first Introductory Remark.
In conclusion, it appears to be o f great importance to get detailed information 

about the nature o f anomalous diffusion : whether it is caused by anomalous 
electron viscosity or by anomalous perpendicular resistivity. Only in the latter 
case could interesting (3-values be achieved.

where v£ corresponds to Г | . Thus the applicability o f

Еф "  л '^ф
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Abstract

C O LLISIO N A L TRA N SPO RT.
Collisional particle and heat transport is treated in plane and toroidal geom etry. In 

particular, temperature gradient effects on impurity diffusion — so-called temperature 
screening — are considered for the different collisional regimes. The existence o f quasistationary 
self-consistent tokam ak equilibria with finite resistivity and a possible lim itation o f  the 
maximum ß caused by particle diffusion is discussed.

A. PLANE GEOMETRY 

The case o f  p lane geom etry s e rv e s , on the one hand, as a 

r e fe ren ce  case and, on the o th e r , i t  can be o f  in t e r e s t  f o r  tokamaks 

w ith  h ig h ly  e lon ga ted  c ro s s -s e c t io n s .

1. AM BIPOLARITY

In this section the motion of single particles in a magnetic 

field 15 which is constant to lowest order in the gyro-radius is 

considered, and the influence of collisions on this motion is 

investigated. Let JB have only a z-component in a rectangular 

coordinate system x,y,z, В « (0,0,В), then the unperturbed motion 

of a particle is described by
и С * ti 6 •

и  « t  -  у В, шу = - — хВ

For В = const to lowest order in the gyro-radius we obtain

with w » x + iy:

• -iüJ t 1 • — i(jj tw “ — i w w, w “ w e g , w *= w w e  g
g  О O l l d g  О e

where wq is the complex gyro-centre position.
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If the particle undergoes a collision with a sudden change in 

w but with w unchanged, one obtains a change in w given by
О

. 1 . * -iu t 1 А ш и - сAw * -—  Aw e g ° -r-- —о 1ш o i eBg
Using vector symbols _rQ - (Х0«У0)» v - (x,ÿ), we obtain 

Anw x В
A r  -  С ---- '7 | ~
- о  eB2

If we define the mean centre of charge of the colliding pafticles by 

ГеГф/Е|eI

where the summation goes over the two colliding particles, then we 

get for its change during collision
, i EAmv x В EeAr /SI e | - с — д — ■■— ¡ = 0 since EAmv ■ 0 b 2¿ 16 j *"*

Thus, to lowest order in the gyro-radius there is ambipolar diffusion

due to momentum conservation.

This holds very generally for all situations in which the change

of the mean position of a particle during collision in the direction

of the pressure gradient is proportional to the gyro-radius, i.e.

proportional to the momentum.
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2. C LA SSIC A L D IFFU SIO N

From Vp “ — i x В , n - j = E + — v x B ,  and E - 0 one finds
С  *■  * "  ^  —  с  “  ”  “

V P  “ (v x В) (B(v • B) - v B2)

from which

v  -  -  Vp .= y c l

results. This is so-called classical diffusion. For T •> const, which, 

in reality, is assumed here from the beginning, this can be written as

v - - T Vn = - £ Vn



with Che diffusion coefficient 

D - nTnc2/B2

The resistivity л can be expressed by the electron collision frequency 
mn “  v . —я—ei ezn

With this expression we obtain

mT c2 2D “ v . i, „л “ v . r ei e2Bz ei ge

Thus, the diffusion can be described as a stochastic process with the 

gyro-radius as the step size of a single process.

The magnetic diffusion coefficient describing the skin effect is

»  - ¥ ■m Ч1Г

which leads to the relation

_ АтгпТ _ 1 . _ . nT
D “  Dm “  2 ß Dn • ß "  в Щ *

This means that particle diffusion in plane geometry is small

compared with magnetic diffusion as long as the local В is smaller

than 1. Using the expression for the Spitzer resistivity

i i с ,„-14 ZlnA4 " x 10 73/2
eV

and taking Z - I, TeV = 1Ĉ  ( - 10 keV)

we obtain

D » 0,82 1пЛ cm2/sec m

= 15 cm?'/sec

To get a confinement time of 1 sec for В - 1, it would be enough

to have a half-thickness of the plasma of the order of 5 cm. A

half-thickness of 5mwould lead to particle confinement times of lO^sec
cTFor comparison, Bohm diffusion Dg « ~[6eB О̂Г ^ keV an<* В “ 40 kG

would give Dß ■ 1.56 10  ̂cm2/sec.

COLLISIONAL TRANSPORT
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3. CLASSICAL HEAT CONDUCTION PERPENDICULAR TO В

The transport of heat perpendicular to 15 in the direction of VT

can be described by a stochastic process similar to diffusion. Thus

q “ - kVT “ - D_ nVT—  T

same contribution to D as far as collisions between these two species 
are concerned, only ion-ion collisions are of interest. Thus, the time- 

scale for heat conduction is shorter than for diffusion by a factor of 

-\j m^/пк ', which is 1/61 in the case of deuterium and 1/74 for tritium.

4. IMPURITY DIFFUSION

Qualitatively, we have the following situation. Since the impurities

interact much more strongly with the hydrogenic ions than with the 

electrons, the mean relative motion between impurities and ions is small 

compared with that between electrons and the heavy particles. We can 

therefore go into a system of reference in which all the heavy particles 

are at rest simultaneously. These particles are then not confined by a 

magnetic field but by an electrostatic space charge potential U(x> with, 

say, U(0) «= 0, where x = 0 means the centre of the plasma. Only the 

electrons are confined magnetically. Then, since we have almost thermal 

equilibrium,

where now also contains contributions from equal particle

collisions. Since v..° 
l i

and electrons and ions give the
e

n¿(x) -'n^(O) e
e.U (x)

i
or

1 к
For e^ ■ e (hydrogenic ions) and e. * Ze, T, » T^ ■ T we have



a result first obtained by J.B. Taylot . Since Z > 2, all

kinds of impurities are more concentrated in the centre of the 

plasma than the hydrogenic ions as far as this formula is applicable.

A remarkable change of this result occurs if one takes into account 

a temperature gradient. One can do a very simple perturbation 

theory with respect to a temperature gradient in a kinetic equation 

of the Bathnager-Gross-Krook type, leading to a perturbation of a 
Maxwellian distribution f^ caused by gradients and electric fields:
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д*<2> “V x ^ V y  r ¿ _  ZeEx~[ f(Z)
vz2+uz2 [_ Эх T J fM * “Z mzc

is the collision frequency of impurities of charge Z with hydro

genic ions. Doing the corresponding calculation for the hydrogenic 

ions and imposing the condition of momentum conservation during 

collisions in the у direction, one can eliminate the electric field

and obtain ambipolar diffusion in the x-direction. The flux of the
(Z)impurities calculated from <Sf is then

th „ 
vz n ,  , r . . 3n„ , 3n„

rz “  <nV z  =

th
' 112 J_T 7 Г 1 I z 1 H 1 . . 1ИЭТ-]2л ù |_Z nz Эх nH эх 2 U  z'Ï3xJ

If there were no temperature gradient, the stationary state would 

require that

I _L „ i ЭпнZ nz Эх nH Эх
or

Z
nz ~ пн

as we had found before. To find out what the influence of the 

temperature gradient is, it is convenient to discuss temperature 

profiles related to the hydrogenic density profile by 

aT(x) ~ Пд"



For nz we write
В

nz - nH

The stationary state is then obtained for

f  -  , ♦ I  ( ,  -  | ) .  о

or

в -  z - j (Z-l)

For a < 2 we have В > 1, assuming Z > 2, and for a > 2 we have В < 1. 

Thus, up to a “ 2 there is impurity influx. For a > 2 there would be 

impurity outflux, an effect which is called temperature screening.

The physics of this effect in plane geometry is, as can easily be 

seen from the calculations, the v-dependence of the collision frequency 

VZ" VZ were independent of v, impurities could never be thrown out 
by temperature gradients.

B. TOROIDAL GEOMETRY

1. PFIRSCH-SCHLÜTER REGIME

In toroidal geometry we have to distinguish whether collisions are 

frequent or rare. The macroscopic theory applies if the mean free path 

of the particles is shorter than the connection length qR after which a 

field line has appreciably changed its meridional position on a magnetic 
surface. In this case, the only problem in establishing an equilibrium 

is that, unlike in the plane geometry, currents parallel to IÎ also have 

to be driven against the plasma resistance. This cannot be done 

directly by diffusion through a v x Ъ term in Ohm's law since such a 
term acts only perpendicularly to 15. We therefore need, in addition, 

an electric field to drive the parallel currents. Such fields arise 

automatically by charge separation because the diamagnetic current is 

not divergence-free. But such space-charge fields have to be pure
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poloidal fields because of axial symmetry. The projection of these

fields on the field lines must drive j|( and is therefore given by

П., q j.. which holds if the toroidal, field is the main'Il И Й 4 Jdiam,
confining field. The poloidal electric field therefore has the strength

n„ q • T^e component of this field perpendicular to JB
has to be transformed away by a ̂  v x 15 term, otherwise it would drive
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nu qR ■ current —=■ q j ,. >> i ..ть r diam diam

The velocity, being of the £ x IJ type, has to be in the poloidal and 

mainly outward direction (Fig. 1) and is obviously of the order

v „ JUL 2 S£l v P nA r cl
To ensure an almost divergence-free motion of the plasma with a

stationary density profile, the plasma has to flow-back along the

lines of force, the necessary velocity being 
qR

V „  к  VЙ r p

But a fraction r/R of the poloidal particle flux leaks out, giving rise 

to a diffusion velocity1

vrs“f vp *  if 2<»2 vcl “ q2vcl 
2This velocity means that the expansive energy corresponding to v „ notpt>

only goes into Joule dissipation of the diamagnetic current but also 

into Joule dissipation of the secondary current, which is a factor 

-k- 2q2 larger than the first one.

This so-called Pfirsch-Schliiter factor q̂  is also present in heat 
conduction. The physics there, however, is very different from

that for diffusion. It has to do with a heat flow:
J

Чко.- !  *  7v
--  k

1 First derived by D. Pfirsch and A. Schlüter [2].
2 In agreement with a more general discussion by M.D. Kruskal and R.M . Kulsrud [3].
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FIG.l. EX В drift caused by charge separation.

which is perpendicular to VT, which follows very easily from a 

formula like the one for if above. Since it is not divergence-free, 

it leads to a heat flow parallel to JB and consequently to a 

poloidal temperature gradient. With this gradient the above formula 

yields a radial heat flow which is then of the order of q2 times 
the plane value.

The above discussion of particle diffusion and plasma convection 

does not lead to a condition that current reversal in the toroidal 

direction should not be allowed,as is sometimes said. Strictly speaking, 

however, the outlined theory applies only to low-B stellarators.

There might arise severe changes if one treats tokamak equilibria in a 

self-consistent way, and this shall now be done.

In a cylindrical coordinate system R,i£,Z one can describe an 

axisymmetric field configuration by 
■ 7ф x Уф , “ F(\|)) Уф

The pressure p is a function of the flux function i|> alone, and because 

of the large heat conduction of the electrons parallel to 13 it is 

reasonable to assume that the temperature is also a function of i|i 

alone. For simplicity, we neglect anisotropy effects in the 

resistivity n . It thus holds that

P “ р(Ф) t n " П(Ф) , n - n(i|<)
where n is the particle density.



The question is now what functions р(ф) and F(i)i) are possible 

for self-consistent equilibria.

The answer follows from the question how the currents necessary 

for the equilibria can be driven. The current densities are

IT  j t " Rp’ + í í  ( f 2 ) ' * T" j p “ 1" 7ф X 7ф “ F '-p

The toroidal current can be driven partly by a loop voltage 2irU or 

the corresponding electric field U/R, partly by plasma convection.

It thus follows that
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nj„ - U/R + 4- (v x В)д

With

(v x JJ)̂  = (vx(Vi() x ^Ф))^ “ |j-^(v.Уф) + V ^ v - V ^  *= - ̂  v-Vi|i

we find

iiv-V* = U/R - njt = U/R - n(Rp' j  (f2)')-57

If - N ( i/j)  is the total number of particles diffusing through a magnetic 

surface if> const per unit time, then

n(i|i) I v_'iS_ = -N

iJ/=const
It is

J r d S  = < ^ > 2 w R ^

ф=const ф ф

The volume enclosed by a flux surface is

2irdl

and therefore
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D efin in g  averages by

2, <£g | I

ф p

we ob ta in

- S v ’ “ c U - t 2 [p ' <R2> + i (F2) ’]

p ' и T1<R2> [ “  + îïv ’ “ I  ( f 2 ) |]

The p o lo id a l curren t can be d r iv en  p a r t ly  by a p o lo id a l e l e c t r i c

p o te n t ia l  f i e l d  .E = -  УФ and p a r t ly  aga in  by con vec tion . I t  thus

fo llo w s  that

n j “  -  V i + — (v  x B)
Jp с -  -  p

For the la s t  term here we f in d

(v  x  B) = (v  x (Уф x Уф )) + (v  X ГУф) *» Уфу*Уф + F (v  x  Уф)
— — p — P -  P ~  —

T h e re fo re , i t  ho lds that

F ' l p  •= -  УФ + Уф v -Уф + F £  (v  x Уф)

Uniqueness o f  the p o te n t ia l  req u ires  th at

<̂> j p . УФ
R d l “  0 

ф p 

With

Bp* (v  x  Уф) ■ (v  x  Уф) • (Уф x Уф) ■ \г*Уф 

th is  con d it ion  y ie ld s

< j> d l [ß F,Bp - t ï p î r 7* ] " ^ Ç  [ f w  F ' Bp2 - W v - У ф ] » 0

In s e r t in g  the exp ress ion  f o r  v*Vÿ and using the d e f in i t io n  o f  

a verages , we g e t

f  F'<Bp2> - <|>[ü/R - f  (V  (F2)’)] - 0
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fL F-<Bp2> - fü<I2> ♦ a  p.F ♦ a  I(F2)*F<i2> „ 0 

Multiplication with F and insertion of p1 yields

f  i <!*>'<»,*> - F’<|,> [u - f j  <*)•] . [ü . i ,  &<*>']■

or

. g. р.га [<„*> <¿> - l] . i .  f4 R2

From this we obtain with

4»> - <(fF24,> ■= <(|)2> - <B 2>

“ ■ TI7> [ i  <f2>,<bp2> " p,<Bt2> c<r2> ' &  n ]

Multiplication by "j'ÿ'ÿ’j'2 yields,with |v̂ | 2 *= R2Bp2,

nV’Vil> ** nVV , N - - nVp-VV , p'Vifi ■ Vp, etc.

r. VR2B 2 В 2 . - -I —r
VD “ " <B~2> [ 2  — R T ~  -  yP - Г Т  R2 C<r2> " "r2* 3 ]—  t L- p - 1

1 VF2For y  —̂ 2 “ “ Vp one has just the Pfirsch-Schlüter formula and it 

obviously does not matter how large. p/Bt 2/2 is. Thus there is no 

condition that would not allow current reversal. There was only 

one relation between F and p which can be solved for p':

<B 2> I .4ncU_ j_
c2n R2

Using this, the toroidal current density be'comes



70 PFIRSCH

U has to be chosen so as to guarantee qQ on axis greater than 1. If the 

magnetic surfaces close to the magnetic axis have circular cross- 

sections, then

/ 2B 0
—  J “ тг—  and therefore с Jt° R q.o4o

4ujt °  2В^°

~ cR ~  IT ?
О о %

AïïcU 1Current reversal can occur if <—£> becomes of the order of

(f2)'( ̂ 2 “ somewhere. Since

F - * > - ¥ »  • RV

i_ r2r 2r 2r
i  /v2\4 L  -  J -■ 2r - R R? '  Î2  "̂ 2 ) ~ P P DTI * DQ

we get

P P

The ratio of this over the above quantity at r is therefore

2 r  P q  2 r  

“a2 R 
RB

R V  _ 2r2 qoPon r2fi Bp ту
2Btno " ̂  BpBt4o" 7  p4° Bt no

This is larger than 1 for ß > -3- £ Д. Ийp q_ r r n

Assuming q/qo “ 2.5 , T/T0 ' ̂  » r = a> ^ölds that ß^>0.31 
and there is no problein with the existence of Such solutions.

To conclude this discussion, the relation for p is written by using 

vector quantities. He obtain after multiplying by Уф

Vp -  -  <{2> J  V(R2Bfc2)
<B 2>

1 4 - z f r r R & ̂ (К7Ф x -V

2. BANANA REGIME

Even if there were no collisions at all, not all the particles 

in a tokamak plasma could move freely round the torus along the 

field lines. Since the magnetic field strength varies along a field

» 
lw
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FIG.2. Banana orbits.

line over a length after which a field line has appreciably Changed 

its meridional position on a magnetic surface, i.e. after a length 

Of the order qR, a particle sees magnetic mirrors at a distance qR.

The strength of the mirrors ДВ/В is given by the inverse aspect ratio

ДВ/В » a/R

There are therefore particles trapped between such mirrors according 

to the law of energy conservation:

yB + mvj, 2 » const or уДВ + Ду mv((2 “ 0

for which it holds that

l 4 BV» 2 l '’ ( i mV|l2)max

Since p *= y m\Q_2/B, this means that

Ä ?  .  M  .  I  «  1vA 2 В R

Such particles drift essentially in the vertical direction with a

velocity
mv. 2/Rv •  e ni dr¡ iDrift c eB

During the time the particle flies from one mirror to the other» 
that is,the time qR/v# , the particle moves a distance

mvj с vj. R.  —  / U I V I  L  V J _

6 “ Drift 4R/V« ‘ I B  Ч ' 1} 
out of a magnetic surface in the vertical direction. This is the 

thickness of the banana-like orbits (Fig. 2).
If there are few collisions, the first to occur is a reversal of 

v(( , since v|( is much smaller than v^ . This means that an inner



part of a banana orbit becomes an outer one or vice versa, i.e.

the particle does steps of the order of the banana thickness 6 .

The banana thickness therefore replaces the gyroradius in plane

geometry. The time to reverse v(( is, however, not the usual mean
v 2free time but is shorter than this by the factor ̂ 2  • Thus we

have to use a trapped particle collision frequency

v 2 R
V .  “  -2  v e  —  Vt Y 2 a

The number of such trapped particles is proportional to the vK 

interval given by the trapping condition, i.e.

\  ■ n ^ “ nf F

A stochastic process with 5 as step size then yields the diffusion 

coefficient3

n js2 "t 2 2  v i 2 v2 v., 2 2Dd ”  —  -  г. - 'S  — ,  v —  » r ,  *v q * (—)B t n ^ v« vu v J 4 va'

- dps ( R /a ) 3 /2

This derivation is valid as long as particle trapping is not inhibited 

by collisions, i.e. for vtqR/v|( < 1 or
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V2 «  qR/v \3 qR .3/2 , . . % .3/2 Dv — ,qR “ *-/ — 1 » ■*- A < .1 or Л > A qR
V  4 V" /  *

where Л is the mean free path. Thus there is a regime left :

qR < X < A3 /2 qR

Since

V  DPS~' A
one has

DB(A - A3/2qR) “ Dpg(X - qR)
One therefore expects the following behaviour of D(shown in Fig. 3).

3 First derived by A.A. Galeev and R.Z. Sagdeev [4].
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FIG.3. Diffusion coefficient as function of the inverse mean free path (idealized). 

The inner part forms a plateau and is therefore called the plateau 
regime. In reality, there is a smooth transition from the banana 

to the Pfirsch-Schliiter regime.

Since the stochastic process including banana orbits is only 

modified by geometrical factors compared to that with gyro-orbits, 

ambipolar diffusion again holds.

Tliere are two sccorcyany ing effects which are of importance:

1) the so-called bootstrap current,

2) the Ware effect.

There is, so to speak, an induction effect of the high diffusion 
velocity leading to a current density in the toroidal direction

v- . 1/2
4 - ± B »  - •£ 4EL (I )В n p с В dr R P

The corresponding current in the poloidal direction does not occur 

because of a special kind of viscosity. An important consequence of 

this current is as follows. Insertion of this current into Maxwell's 
equation yields



or

ßp " H r i - A  p
I want to mention here a discussion of Borrass and the author £ 5 

In these considerations it is stated and proved for axisymmetric 
equilibria that under certain conditions the diffusion velocity 

should never exceed the magnetic field diffusion velocity in a 

plasma with finite resistivity. Assuming this to be true, one easily 

obtains a relation for an upper limit of ß in the following way« We 

had found above the relation valid in plane geometry

v = I ß v cl 2 magn

The magnetic diffusion described by v does not depend on the1 magn v

geometry. Thus, from the condition

v > v„ magn D
one obtains
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VD

For the banana regime this yields ß < -,-гт—  or with ß « — •—  ß ,
A q2 q2A2 Pq1

1 /2one gets < A , in agreement with the result just derived.

Pseudo-classical diffusion is given by Vjj~q2A2v and therefore 

ßp0  ̂< 1, as is already well known. Pf irsch-Schliiter diffusion is 

expressed by vpK42vc *̂ an(̂ therefore ßpD  ̂< A2, which would be much 
larger than often assumed, and which is probably not in contradiction 

to an exact theory as outlined in Section la. If this ß relation is 

correct, it would lead to extremely severe restrictions as to the 

permissible anomalous diffusion rates if these are not caused by a 

corresponding anomalous resistivity.

The Ware effect is the pendant to the bootstrap current in the 

sense of Onsager's relation and states that the usual E/В drift is



replaced by

VE “ C B .pol

3. IMPURITY TRANSPORT
For impurities in the Pfirsch-Schlüter regime,the impurity 

transport is similar to that in plané geometry but is modified 

by a Pf irsch-Schliiter factor £ б _ 8 ~|, i.e. there is itiipurity 

influx as long as the temperature profile is flatter than given 

by T n2. Strictly speaking,this is true only if

COLLISIONAL TRANSPORT

E

às shown by Samain and Werkoff £ 8  ~| • t _  iS thé deflection time and
H

the Maxwellization time for hydrogen ions. This is likely 

to be the case for the hydrogen ions in the banana or plateau regime. 

If the inequality is the other way around, temperature screening 
vanishes.

If n„Zz/n.Z. 2 > 1, the ion flux is enhanced by a factor of Z 1 1 J

m^/mg over the pure plasma case and the ion heat conduction becomes 

about times the ion heat conduction in the pure case but the

electron flux remains unchanged.

Calculations in which the impurities are also assumed to be in
Г91the banana or plateau regime were first made by Hinton and Moore 1—

If the impurities are in the bánána regime, there is temperature 

Screening as in the Pf itscíh-Schlüter regime. If, however, the 

impurities are in thé plateau regime, no temperature screening occurs, 

this might be a special problem for the a-particleS. But for low Z 

and low mass impurities, long mean free path theories Usually do not 

apply, and so one has to consider the situation as being open for 

such species.
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Finally, I present a short description of the methods used:

1. Use of drift kinetic equation with Fokker-Planck collision term;

2. Zero-order solutions “ local Maxwellian distributions;

3. Linear perturbation theory with respect to 7n, VT, E, T. - T— i e

This is similar to the procedure decribed above for the plane case. 

The linear equations to be solved here are, however, much more 

complicated. A very elegant method for solution was used by Rosen

bluth, Hazeltine and Hinton £ 10̂ ],who proved the equivalence of 

the linear equations with a principle of minimum entropy 

production for the banana regime:. A modified variational principle 
was derived by Samain and Werkoff£ 8 Jand applied to plasmas with

impurities in the collisional regime. The entropy production 

formula can be used, on the other hand, in the sense of Onsager's 
theory.

In the collisional regime one can, of course,do a momentum 

expansion. £ 11 where it is generally necessary to go one 

order beyond, Grad's 13-moment method.
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Abstract

NON-LINEAR NUM ERICAL ALGO RITH M S FO R  STU D YIN G TEA RIN G  MODES.
The numerical methods that have recently been developed to study the non-linear 

evolution o f tearing modes in tokam aks are summarized. The essential features o f  tearing • 
modes can be described by the resistive MHD equations. The numerical algorithms described 
here are based on a reduced set o f two-dimensional resistive MHD equations that are numerically 
tractable. Two distinct types o f numerical methods are described in detail. In the first method, 
referred to as the M A SSLESS algorithm, the inertia is neglected. On the other hand, in the 
second m ethod, referred to as the MASS algorithm, the inertia is retained and consequently 
the scheme is capable o f handling a larger variety o f problems. Codes based on these two 
algorithms give similar results for the non-linear evolution o f the m =  2 tearing mode.

I . INTRODUCTION

The research  e f fo r t s  o f  the la s t  decade c le a r ly  show th at the tokamak 
i s  the most prom ising magnetic containment d ev ice  f o r  a tta in in g  
c o n tro lle d  nu clear fu s ion . Furthermore, during th is  p e r io d , e x p e r i
mental and th e o r e t ic a l ev idence has been accumulating in  support o f  
the hypothesis  th a t r e s is t i v e  in s t a b i l i t i e s  o r  " t e a r in g "  modes [1 ] 
a re  an im portant aspect o f  tokamak d isch arges . For example, te a r in g  
modes could be resp on s ib le  f o r  the long-w avelength  tem pérature o s c i l l a 
tio n s  in  the plasma in t e r i o r [ 2 ] ; these o s c i l la t io n s  are ch a rac te r ized  
by p o lo id a l mode numbers m = 1 and m = 2. The e s s e n t ia l fea tu res  o f

* Research sponsored in part by USERD A  under contract with the Union Carbide 
Corporation.

* *  Present address: Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
* * *  Visitor from  Jun ta  de Energía Nuclear, Madrid, Spain.
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tearing modes can be described by the relatively simple set of resistive 
MHD equations.[1] These equations are so complex, however, that in 
general they must be solved numerically [3]. Furthermore, an analytic 
treatment of the nonlinear theory of the tearing mode for m > 1 shows 
that once its amplitude is large enough to be observable, then its 
time evolution is highly nonlinear [4]. Consequently, a desirable require
ment of a numerical algorithm' for studying tearing modes is that it be 
nonlinear.

In this article, two distinct numerical algorithms for studying the 
nonlinear evolution of tearing modes are presented. Both algorithms 
are based on a simplified (or reduced) set of MHD equations that make 
the problem tractable numerically [5]. The reduced equations are obtained 
by making a series of sensible approximations that reduces the number of 
independent and dependent variables and eliminates the fastest MHD time 
scale. The fastest MHD time scale is тн = гм/Уд, where rw is the minor 
radius of the torus and VA is the Alfvén speed. The elimination of this 
time scale is particularly important for resistive instabilities because 
they evolve slowly on a time that is much longer than the MHD time. In 
one of the numerical algorithms, the MHD time scale is really completely 
eliminated because the inertia term in the momentum equation is ignored. 
This algorithm, which is referred to as the MASSLESS algorithm, is 
capable of following the nonlinear evolution of a single tearing mode 
with ш > 1 on the resistive time scale. The other algorithm, referred 
to as the MASS algorithm, retains the inertia term and is capable of 
following the evolution of any mode on the slowest MHD time scale, i.e. 
the time scale = R/Уд, where R is the major radius of the torus.

In Section II, the approximations required to derive the reduced set of 
resistive MHD equations are discussed. These reduced equations are 
sufficient to describe the evolution of perturbations of a given pitch 
in a low-ß fluid; toroidal effects are neglected, i.e. cylindrical 
geometry is employed. In Section III, the equations are reduced further 
by ignoring the inertia,and a numerical algorithm for solving these 
MASSLESS equations is described. The inertia is retained, however, in 
Section IV, and the numerical stability properties of various algorithms 
for solving the full set of MASS equations are discussed. Finally, the 
results obtained using the MASSLESS and MASS algorithms are compared in 
Section V.

II. REDUCTION OF THE RESISTIVE MHD EQUATIONS

The analysis begins with the standard set of resistive magnetohydro- 
dynamic equations:

J = —  V X В 
- Uo - -

(Ampère's Law)

Э ! = -V x E (Faraday's Law)
at
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P H? = P ÏF + - = ‘-P + - x ? (Momentum Balance)

p + V • (pV) = 0 (Continuity Equation)

E + V x В = nJ (Ohm's Law)

(Pp”Y) = 0 (Example of an Equation of State)

Here J is the current density, y0 is the magnetic permeability (ration
alized MKS units are employed), _B is the magnetic field, j: is the
electric field, p is the mass density, V is the fluid velocity, P is the 
pressure, and y is the adiabatic constant. The resistivity n is usually 
a specified function of space and time.

In order to reduce this set of equations to a tractable form, the follow
ing approximations are made:

a) Cylindrical geometry. Toroidal effects are ignored. The standard 
cylindrical coordinate system is employed with r, 9, and z designat
ing , respectively, the radial, poloidal and toroidal coordinates.

b) e s 2tt rw/L «  1. This is the standard tokamak ordering where
L = length of the cylinder = 2irR and rw and R are respectively the 
minor and major radii. Since the piten of the field lines is of 
order unity, this ordering corresponds to Bg/Bz ^ e.

c) B, is constant in space and time. This approximation is consistent 
with the tokamak ordering since Ъ2 |Вд| £ Bg ^ eBz, where the tildes 
denote perturbations and i means perpendicular to z. The main purpose 
of this approximation is to eliminate the fast time scale тц = гц/Уд, 
the characteristic time for Alfvén waves propagating across the 
magnetic field, where VA is the Alfvén speed. Then, the fastest time 
scale remaining in the equations is R/Va, the characteristic time 
scale for Alfvén waves propagating along the magnetic field.

d) Helical symmetry. All quantities are assumed to be initially spatial 
functions of only r and т = m0 .+ kz, where m and к are respectively 
the poloidal and toroidal mode numbers. In terms of the commonly 
used toroidal mode number n, к = n/R. Clearly, this symmetry is 
preserved as the system evolves.

2e) ß e . Here, of course, ß is the ratio of the plasma pressure and 
the magnetic pressure. This ordering is valid for present tokamak 
parameters.

In addition to simplifying the algebra, approximations a) and b) are 
necessary for.the consistency of approximations c) and d). Approx
imations c) and d) permit the introduction of the helical flux 
function ф:

В = уф x z + Bzh
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Here, h = z - 66 is the unit vector along the helix defined by т and 
6 E kr/m. It can be shown that ф = h • A, where A is vector potential 
of the magnetic field. In addition to allowing the magnetic field to 
be expressed in terms of a single scalar quantity, the introduction 
of ф ensures that V • IB = 0 ,  which means that field lines should not 
wander spuriously. Orderings b) and e) and the z-component of the 
momentum balance equation imply that Vz is of order e|VjJ and hence 
can be neglected. Furthermore, approximation c) and the z component 
of Faraday's law imply that V • V is of order e^lvj/r^ and thus can 
also be neglected. Consequently, we can introduce the stream function 
A for the velocity:

V = VA x z

Notice that the necessary equation of state in this ordering is V • V 
Then Faraday's and Ohm's laws imply that

dip Эф .
dt " at Уф = - nJj/S (D

Here, and in the following, all derivatives are in the plane perpend
icular to the z-axis. (Although we take into account helical 
symmetry, it is convenient to write the equations in the z = 0 plane.) 
All lengths are normalized to rw; the time is normalized to = 
m(V>0 P) 1' 2/kBz, where p is the characteristic mass density; the flux 
function ф is normalized to kBzrw2/m; J? is normalized to kBz/(y0m); 
and n is normalized to the characteristic value n. The quantity 
S =  t r / t h  where t r  S  ^ o ^  /4 is the resistive or "skin" time. The 
toroidal tomponent of the current density can be obtained from Ampère1 
law:

Jz = - У2ф - 2 (2)

If the mass density is constant, taking the z-component of the 
momentum balance equation yields

3t

where

U = z • [Уф X VJ ] (3)

U = V2A HD

is the vorticity. Equations (1) - (4) constitute a set of reduced 
equations [5] which is sufficient to describe the fluid when approx
imations a) - e) are valid. The MHD equations have been reduced to
two equations in two scalar unknowns with the conditions V • £ = 0
and V • V = 0 automatically satisfied.
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III. MASSLESS ALGORITHM

In some cases, it is possible to reduce the resistive MHD equations 
even further. Since Eq. (1) implies that 3/3t ъ л, we might expect 
from Eq. (3) that SV^A/St ^ л2, so that the inertia can be neglected. 
This is valid approximation in the nonlinear regime of a single 
magnetic island if m > 1. By the term "single magnetic island" 
it is meant that for a given ratio of m and n there is only one 
magnetic island because the safety factor q is a single-valued 
function of r. If q is double-valued, there can be two islands 
each of which is localized about a radius where q = m/n; we refer 
to this case as a "double" magnetic island. In order to describe 
the linear regime, an m = 1 mode, or a double magnetic island, 
the inertia must be retained.

If the inertia is ignored, Eq. (3) implies that the current density 
must be a function only of ф. Ignoring the inertia, however, 
requires that the velocity V must also be eliminated from Eq. (1). 
Consequently, we average over flux contours:

where F is an arbitrary function. In Tesistive time units, the 
equations become [6]

Here, we have replaced ф by ф - tEZw where Ezw is the electric field 
at the wall, so that the boundary condition is ф(гм) = 0. Clearly, 
these equations evolve only on the resistive time scale.

The primary numerical difficulty in solving these equations is ensur
ing that У2ф = f^). In order to accomplish this, we employ an 
iteration scheme that involves expanding У^ф in a polynomial series:

У2ф = - JZM  -  2 = f M

and

Here, ф is known at time t and must be found at time t + At. The 
iteration index is denoted by N,and Pfc is some polynomial (for
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example, Legendre). The coefficients depend on both the time and 
iteration number. Thus, if we define

then

Gk < At) -= V-2Pk< A t)

C 1 = i  w < +At> к

In practice, ф is a multi-valued fucntion and different polynomial 
expansions are required for different regions of the plasma.

The coefficients Ck for each iteration are determined from the 
flux evolution equation, which is advanced implicitly in time. We 
have

' V *  V+At/2 t+At/2 AtnCV¡l } zN, £ zw
VN , i N,£

where i  denotes the particular flux contour,

and
Tt+At/2 y\ r Tt+A t ..t+At.. , t , , t . 14
J zN,/ =< 2 tJ z %  3 + V *  îl>t+At/2

The corresponding matrix equation for the coefficients is

г Н(Я|к)С = R(£) 
к K

where

H(*|k) = <Gk< At) - £ л < ? ' 2) Pk< At)>t+At/2
N,£

R(A) = < / > t+ A t/2 ' f  Л ( Ф ^ /2)[<^(ФЬ A t/2 -2]+AtE 
V *  4 M
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Rather than satisfying the preceding equation for each value of 
I , it is desirable to satisfy it in a least-squares sense by 
requiring

V = Z[R(Ä)- EH(£|k)C ] 2 
Л к

to be a minimum. Of course, the number of contours must be greater 
than or equal to the number of functions. Then, the equation to be 
solved is

Z M(k' |k)C = S(k') 
к K

where

м(к' |k) = s н(г|к')н(;г|к)
i

and

S(k') = Z H(5,1k')R(k')
¿

In principle the above scheme is extremely efficient because the 
time step can be quite large. In practice, however, a large number 
of polynomials is often necessary in order to represent ф accurately 
and, consequently, a large amount of time is required to repeatedly 
invert Poisson's equation.

IV. MASS ALGORITHMS
In this section, we analyse various numerical algorithms for solving 
the reduced equations including the inertia. If we use a time 
advancement scheme that is totally explicit, we expect to encounter 
the standard diffusion limitation on the time step, i.e.
At < (Ax)2/(Sn), where Дх is the normalized grid spacing and At is 
the time step in MHD units. Because Ax must be small in order to 
resolve the singularities in the equations and because in cylindrical 
geometry Ax ъ rA0 becomes very small near the origin, this restriction 
is unacceptable. In order to eliminate the restriction, we must 
employ an implicit scheme.

In the following paragraphs, we consider both a partially implicit 
scheme [7] and a fully implicit scheme. For the purposes of comparison, 
we also consider the details of a fully explicit scheme. In each 
scheme, once U is obtained at a particular time, Eq. (4) must be 
inverted in order to obtain A and'thus V. Also, we employ a two- 
step algorithm in each scheme in order to center the time advance
ment. To simplify the notation, we define
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and

_ - ,Э v-2,,,1 Эф.
e = (3FV

We also denote the finite difference forms of r t r ^r 
1 ^ 2  (5 6 6^ Ô

and г2 Э0 2 by> respectively, ĝ, -gp - and ̂ 2.

a) P a r t ia l ly  Im p lic it  

Step 1
^t+At/2  = ut + Д1 [ 2 . у . ^jt

.t+At/2 t Atr бф 6j¿,t+At/2 At r„ бф 62Ф ,tv - ip - j~[vrI7  - n ^sH - 2- [ve ss  - n ye4- - 2n]
Step 2:

Ut+At = u* + At[Z - V • VU]t+At/2

* ' * “  -  - ^ l v r  f  - n & ] *  - £  I», S  - n Й

Here, the vorticity is stepped explicitly. The flux function, 
however, is stepped implicitly by the alternating direction method; 
in the first step the r derivatives are implicit and in the second 
step the 6 derivatives are implicit. In both steps, ф at the forward
time can be found by inverting a tridiagonal matrix.

b) Fully Implicit 
Step 1:
yt+At/2 _ t At r бф,1+Д1/2 At j бф-jt
N+l U 2 1 r r 6rJN 2 1 0 e 60J

.t+At/2 ,t Atr„ бф 6^,t+At/2 Atr„ бф б2ф _ ,t 
V i  = * - 2~ r 15? - П ^r^ N+l - 2-tVe M  - П Ш  -2n]

Step 2:
t+At _ ..t+At/2 .Atr_ v 0ip,t+At/2 Atr. у 6ф]1+А1un+i - u + 2~ t - vr W ] + 2“[ze - ve W n
,t+At .t+At/2 Atr„ бф _ ô^,t+At/2 Atr,, бф б2ф , ,
V i  = * - 2 - t vr 3 F  - 2 - í ve M - n 607-2n]

t+At
N+l

Here, by iterating, both the vorticity and the flux are stepped 
implicitly using the alternating direction method; N denotes the 
iteration index. In the first step, the r derivatives are implicit; 
in the second step, the 0 derivatives are implicit.
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с) Fully Explicit 
Step J:

V U ] ’

,.t+At/2 ,t Atr„ n. . ,t+At/2 
Ф = Ф - 2“ [V • Уф + nJz]

Step 2: 

Ut+At = U1 + At[Z-V • WJ] t+ A t/2

,t+At , t T .t+At/2ф = ф + At[V • _Уф + i"|J ]

Here, both the vorticity and flux equations are stepped explicitly.-

We employ the standard von Neumann numerical stability analysis to study 
the stability of these time advancement schemes. We linearize Eqs (.1) 
and (3) and neglect all small terms in order to make the analysis 
tractable. Since only short wavelength instabilities are of interest, 
the analysis can be performed in slab rather than cylindrical geometry. 
Furthermore, for short wavelength instabilities, iJj¿ is approximately 
constant and hence Eq. (4) can be trivially inverted to give A. Here, 
Ф0 is the unperturbed flux and the prime denotes the radial derivative. 
In finite difference form, the equations become

ЭА ill > 6ф
9 t ^ 0 1 ôy

Эф SÀ
к -a t + T5ÿ

P2r

where "o" subscripts denote unperturbed quantities, tildes denote 
numerical perturbations, and the rectangular coordinates x and у 
correspond respectively to r and 0. We take the numerical perturbations 
to have the form

í a,*.-, i(jk Ax + kk Ay) f = f(t) e x у 11

where j and к are the grid indices, kx and к are the wave numbers, and 
Ax and Ay are the grid spacings. Then the equations reduce to

ЭА . y  i
3t = - 1 It *

where

dip . у  »  1 / ч i"5Г = - 1 -XT' A - хгС« + а„)ф dt At At x y'r
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First, we consider the partially implicit method. The linearized 
version of the time advancement equations becomes
,t+At/2 .t 1 . ,tA = A - j  iyty

it+At/2 ,t lr. . .,t+At/2 1 ,tФ = Ф - + ахФ1 ‘ J aŷ

At+At = A1 - ivPt+ A t/2

^t+At _ lpt+At/2_ l[iyA + t+At/2 _ 1 ^ f A t

After some algebra, these equations can be written in matrix form as

2 + ax - y 2 _ i y (2  -  oty -  Y2/2)‘ t+AflA

t+At
=

* .

2 + a„

4 iy

2 + ax

( 2  -  a x )  ( 2  -  o ty) - 2y

(2 + ax) (2  + Oy) (2 + ax) (2  + ay)

= X

Thus, the amplification factor X is à solution of the eigenvalue 
equation

where
aX + ЬХ + с = 0

a = (2 + ax) (2 + ay) 

b E -8 -2axay + y2(4 + ay) 

с E -Y2“ y + (2 - ax) (2 - ay)

The scheme is stable if and only if |X| <_ 1. We wish to determine 
the restriction imposed on At by this inequality. We must consider 
two possibilities: either b2 - 4ac < 0 or b̂  - 4ac >0. If b2 - 4ac < 0 
then |X| £ 1 implies that a ̂  c; this inequality is always satisfied.
On the other hand, if b2 - 4ac > 0, then |X| <_ 1 implies that a + с ^ | 
i.e.

y2
2 + аУ

2 i 2Since the maximum value of у is (Ati|>¿/Ay) , the restriction on the 
size of the time step is

At < Q-X—< Г 8 1
-  K l  [ т т ^ J

where a is the maximum of а . In cylindrical geometry, rA9 corresponds 
to Ay. y y
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The linearized equations for the fully implicit scheme are 

A l *it/2 ■ A *  -  i  f t ' * “ «

f ' * “ / 2 -  /  -  i  ( Î Y »  *  ^ H , * 4 t / 2 -  1  O y /

At+At _ At+At/2 î ̂ t+At/2

,.,t+At . t+At/2 1.,. . ,t+At/2 1 . t+AtФ = Ф - j [ iY A  + ахф] - j  ауф

provided the iteration scheme converges. The eigenvalue equation for the 
amplification factor is

2aX + ЬХ + с = 0
where

a = (2 ♦ ay)(2 + ax + y2/2)

2b = -8 -2axay + 2y 

с = (2 - ay)(2 - ax + y2/2)

In this case, both conditions a _> с and a + с >_ |b| are trivially 
satisfied and there is no restriction on At.

Now, however, the convergence of the iteration scheme for the fully 
implicit method must be studied. For the first part of the time step, 
the equations in linearized form are

Then,

C t/2 = At - b  C t/2

C l t/2 = - f f iYA + ax ^ N +At/2 - J  v "

.t+At/2 _ f2 - Oy /  _ j ___  t, _ I Y2 ^ *A t/2
V l  ' [Т ~ Г ^  * 2 + ах ] 2 2 + otx N

We define 6 ^ +At/2 = ^t+At/2 - *Nt+At/2, where *t+At/2 is the actual 
value of ф at the forward time. Then,

j^t+At/2____у____  g.t+At/2
N+l 2(2 + 0lx) N

2and to ensure convergence, we must require у < 2(2 + ax). Therefore,
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Thus, the time step restriction for the iteration to converge is 
similar to the one for the partially implicit time advancement to 
be numerically stable.

The von Neumann stability analysis of the explicit scheme yields the 
requirements ax + ay £ 2 and <_ 3. The requirement that ax + oy j< 2 
is the standard diffusion limitation on the time step, and for typical 
parameters it is more severe than the requirement that Y 2 <_ 3. The 
corresponding restriction on the size of the time step is

At < Min h  г (Ax)2 (Ay)2 , ^ A y  )- Mln |2n (Ax) i ♦ (Ay) ̂ j

Typical time steps for the two schemes are compared in Table I for 
various values of A = Ax= Ay and S. We observe that usually the time 
step for the explicit method is much smaller than for the implicit 
methods. The time step for the fully implicit method can be larger than 
the time step for the partially implicit method by about a factor of 
four. However, we expect that the time step for the fully implicit 
method must be reduced by about a factor of two in order to ensure 
rapid convergence of the iteration. Then, since iterating requires at 
least twice as much computer time per step, the fully implicit method 
probably has little, if any, advantage over the partially implicit 
method. Consequently, the partially implicit method is the one that 
we have tested and employed.

TABLE I. TIME STEPS FOR THE MASS ALGORITHMS

Fully implicit Partially implicit Fully explicit

s Д = 10'2 Д = 10'3 Д = 10"2 Д = 10~3 > II О
1 to Д = 10~3

103 2 2 0.60 0.13 0.025 2.5 X 10‘4
10“ 2 2 1.1 0.27 0.25 2.5 X 10'3
10s 2 2 2.0 0.60 Ф  ■

0.025
106 2 2 2.0 1.1 \/3 0.25

V. COMPARISON OF THE ALGORITHMS

We have built and used two codes based on the two algorithms described 
in this article. In Fig. 1 are plotted the results from both codes for 
the m = 2 magnetic island width as a function of time. The safety 
factor profile is single valued with q(o) = 1.6 and q(î ,) = 4.1. The 
resistivity is constant in time and proportional to the reciprocal of 
the unperturbed current density. The MASS code result is for S =
1.25 x 105. In typical runs, the number of 0 grid points 
employed was approximately 12 and the number of radial grid points was 
between 60 and 120. It was necessary to localize the radial grid about 
the singular surface, particularly for small island widths. In the 
MASSLESS code, the radial grid could be expanded during the course 
of the run in order to more accurately follow the evolution of the
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FIG. I. Comparison o f  the MASS and MASSLESS codes: m =  2 magnetic island width as 
a function o f  time.

growing island. We observe that in the nonlinear regime where the 
island width is larger than the tearing layer width and hence both 
codes should apply, the results are in agreement. Specifically, 
during the period when the island is growing linearly with time, 
the growth rates obtained from the two codes are essentially identical.
The island widths at which saturation occurs differ somewhat. The 
magnitude of the difference is reasonable considering the delicate 
nature of the steady state that exists when the island width saturates.

The main advantage of the MASSLESS Code is that the cost per run is 
about a factor of (at least) four less than the MASS Code. However, 
unlike the MASSLESS Code, the MASS Code can be used to study the linear 
regime, the m = 1 tearing mode, and complicated island structures such 
as those produced by a double m = 2 tearing mode. More detailed 
results from these two codes have been presented elsewhere [8,9].
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Abstract

MAGN ETIC RECONNECTION IN A SPACE PLASM A.
A review is presented o f reconnection in a space plasma o f collisionless magnetic field 

lines with special regard to  the earth’s magnetosphere. The collisionless tearing mode is 
considered to  be the main mechanism fo r the merging o f  magnetic field lines. It is shown 
that the difference between the nose and tail reconnection is related to  the difference in 
the geometries o f  magnetic field lines. Non-linear analysis o f the collisionless tearing mode 
provides an estimate o f  the reconnection rate o f interplanetary and geomagnetic field lines. 
Magnetospheric tail instability during substorms is discussed in term s o f th e  tearing-mode 
•development.

INTRODUCTION

It is well known that even small magnetic fields in large space s,cales can be 
the main energy source that drives many dramatic events in a space plasma. That 
is why the reconnection processes, such as the mechanism o f the free magnetic 
field energy release, have received so much attention during recent decades. The 
importance o f  magnetic field line reconnection was first recognized for solar [ 1 ] 
and magnetospheric [2] physics. These days, it is widely discussed among 
astrophysicists and even appeared to be the mechanism to drive the disruptive 
instability in the thermonuclear device, the tokamak [3]. As in the case o f 
collisionless shock structure, there is no unified theory o f  reconnection. Here 
we restrict ourselves to the simplest case o f a very diffuse plasma slab immersed 
in a sheared magnetic field when the current velocity in a plasma is well below 
the thresholds o f current instabilities. That is really the case for magnetic 
reconnection in the earth’s magnetosphere and interplanetary space where the 
thickness o f the plasma slabs is greater than the ion Larmor radius.

93
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M
ii

П

I)
- 6-

L<C=

F IG .l. Parker-Sweet model o f  reconnection.

1. MHD MODELS OF RECONNECTION

The simplest MHD model o f the magnetic field line reconnection in a plane 
plasma slab was developed by Parker and Sweet [4, 5] (see Fig. 1). It is based 
on the resistive dissipation o f the plane current layer resulting in the magnetic 
field merging. Plasma entering the merging region and being frozen in the 
magnetic field is then streaming along the layer.

Momentum conservation demands that the streaming velocity is equal to 
the Alfvén velocity. A  continuity equation defines one o f the parameters that 
had remained unknown: 5 is the width o f the current layer, L  the length o f the 
plasma slab along the field lines, and u the merging rate:

u L ~ v A 6 (1 )

In the resistive plasma, the merging rate and the layer width are related 
through the magnetic field diffusion coefficient:

D c2
U ~ T ,  D — ----- (2 )

о 4тто

Here о is the plasma conductivity.
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As a result we obtain from  Eqs (1 ) and (2 )

u = (:Ажо уд L

(3 )

One can think that the application o f this MHD model to a cosmic plasma 
(i.e. solar flares, magnetospheric substorms, etc.) is only a question o f the 
anomalous resistivity o f the highly collisionless space plasma. But we should 
always bear in mind that in order to develop the plasma turbulence causing the 
anomalous resistivity it is necessary to exceed the current instability threshold 
(i.e. the current layer should be thin enough). But according to Eq. (1 ), since 
the length L  is usually large, we shall get a very low power o f the processes 
considered (see also Ref. [6 ]).

Let us consider in greater detail the earth’s magnetosphere problems. 
According to Dungey’s early model o f the magnetosphere.there are two neutral 
lines (merging regions)' one is at the magnetosphere nose and the other in the 
tail [2 ].

The power generated during the magnetospheric substorm comes from the 
energy o f the magnetic field stored in the magnetospheric tail. According to the 
Parker-Sweet merging model,this power can be estimated as a rate o f  the magnetic 
energy inflow into the merging region:

where uz = va  Sz/Lx , and ôz is defined by the threshold current velocity V cr:

Since ions in the magnetospheric tail are much hotter than electrons, the critical 
current velocity can be estimated as [7]

uz Ly Lx _ 
8 tt

(4)

4îren0 Vcr
(5 )

( 6 )

where ion temperature can be found from the pressure balance:
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FIG .2. Dungey model o f  reconnection in the earth’s magnetosphere.

For typical magnetospheric plasma parameters:

Bx ~  1.5 X 10-4  gauss 

n0 ~  0 .1  cm-3 

Lx ~  Ly ~  1010 cm 

we obtain from Eqs (4 ) -  (7 ):

B2
& =  vA (c/cjp)Ly ^  ~  108 watts

This is three orders o f  magnitude less than the Well-known observed power o f 
auroral activity. In the same way, the Parker-Sweet model with anomalous 
resistivity cannot provide a high enough reconnection rate at the magnetosphere 
nose to explain the measured electric field within the magnetosphere. The latter 
is the simple mapping along the highly conductive magnetic field lines o f the 
electric field induced by plasma flow  near the merging region (see Fig. 2):

Ey = — ux Bz ( 8 )
с

A  solution o f these problems was proposed by Petschek [8 ], who drew a 
picture o f  the hydrodynamic flow o f a plasma with frozen-in magnetic field, 
with the singularity along the neutral line. The essential features o f this flow 
are shown in Fig. 3.
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FIG.3. Petschek model o f  reconnection.

We restrict ourselves to only this oversimplified picture and refer the reader 
for more detailed consideration to Vasyliunas’ survey [9]. In Fig. 3 the standing 
Alfvén wave separates the region o f constant Bx magnetic field from the external 
hydrodynamic flow described by the curl-free magnetic field:

Bz — Bo
^ B o

00
fin ■

Bv =
©о

(9 )

where © 0 is the position o f the standing Alfvén wave in polar co-ordinates 
(r, 6 ) ; ^ = u x/va is the Alfvén Mach number o f the plasma flowing in with the 
Alfvén speed ux = Bx/^/47rn0M into the standing Alfvén wave; and z* is the 
size o f the diffusion region where the above Parker-Sweet picture o f the 
reconnection takes place. We see that the maximum reconnection rate depends 
on the diffuse region sizes and therefore on the anomalous resistivity only 
logarithmically:
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Petschek’s model provides, in principle, the desirable reconnection rate but it 
has never answered two important physical questions:

(1 ) Why does the magnetosphere nose react immediately on the interplanetary 
magnetic field direction (i.e. ‘nose’ reconnection occurs at once after the appearance 
o f free magnetic energy in the system), and why can the plasma sheet with oppositely 
directed magnetic fields in the north and south lobes o f the magnetospheric tail
be stable for long periods o f time?

(2 ) Why, where and when does the neutral line in the magnetospheric tail 
appear?

( a )

(b)

FIG .4. Magnetic field geometries near (a) the ‘nose’ and (b j the tail merging regions.

2. TEARING-MODE STAB IL ITY  ANALYSIS

We shall now show that the tearing instability analysis gives the answer to 
both questions. We should mention that the difference between the ‘nose’ and 
‘tail’ reconnection comes out from the difference in the magnetic field 
geometry near the ‘neutral’ plane (see Fig. 4).
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FIG .5. Different types o f  geometry o f  interplanetary (Вт -р) and geomagnetic (В ц ) field 
interaction [1 3 , 14]. Symmetrical configuration (a ); unsymmetrical configurations with fb) 
and without (c ) free magnetic energy.

' L

FIG. 6. Model o f  plane neutral layer.

To describe these geometries we use the simplest models o f magnetic 
configurations:

В — Boz thy ^ j  êz +  By êy

В — B0z thl  I êz +  Bx e

(П а )

( l i b )

where Boz, By , Bx are constants. The magnetic field profile is specified by 
Harris’ choice o f the distribution function [10]:

foj (x ,  v ) =  n 0 ( V  exp
2тгТ;

uj = - 2 c T j / e j  B oz A

. Ш 1 + ч ( m v  + 5 i A  (Х)) - П Л  
2  T j  T j  V  J y с oy 7  2 T j

(12 )
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This choice is, o f course, sufficiently specific. For example, for the 
magnetic field configuration ( 11 a) at the nose o f the magnetosphere there is 
one more invariant-canonical momentum along the z-axis:

e;
Pzj = mjvz + — A o z ( x )  

с

Therefore we can easily change the density profile, introducing the arbitrary 
function n0 (Pzj(x , vz)). Moreover the symmetric profile o f n (x ) corresponds 
only to the rather special case o f equal magnetic field strength on both sides o f 
the reconnection region [11, 12] (see also Fig. 5, taken from Refs [13] and [14]). 
For the magnetospheric tail configuration ( l i b )  Harris equilibrium is slightly 
distorted in the close vicinity o f the Bz-field reversal plane but, as in the case o f 
trapped-particle drift instabilities, here again the main contribution to the 
dispersion relation comes from the change o f particle trajectory topology, and 
the distribution function can be considered as invariable and Maxwellian.

Let us recall first the basic idea by Coppi et al. [11] o f the stability analysis 
o f  the simplest magnetic field configuration (see Fig. 6 ):

В — B0z th I . (13)

with the distribution function defined by Eq. (12). Tearing instability o f a plane 
neutral sheet results in pinching a plane current sheet, as shown in Fig. 7. Such a 
type o f perturbation can be described by vector potential in a current direction:

A ! = A i y (x ) exp [- ic o t  + ik z z] êy (14)

Everywhere but the closest vicinity o f the neutral layer (x  <  у / pjz Д, p)Z is the 
Larmor radius o f particles o f j-specie in Boz magnetic field),the Larmor radius 
is smaller than the characteristic scale length o f inhomogeneity and therefore 
low-frequency oscillations (со ^  ojcj (x ), cocj (x ) = ej Bz (x)/mj c) can be considered 
as adiabatic. In this case the distribution function still depends on (z, t) only 
through the у-component o f the particle canonical momentum. Considering the 
perturbation as small, we obtain, to a linear approximation:

fj = f0j (x ,"v )+  fff (x ,-v ; z, t)

f i f  = " V  A i y W  f0j(x ,"v ) exp [ - iw t  + ikz z] 
с I j

(15)



MAGNETIC RECONNECTION 1 0 1

FIG. 7. Tearing mode in a plane neutral layer. 

Combining this result with the Maxwell equation:

rot B, = (47t/c)Ь / v f i j  d3 v (16)

we finally come to the Schrödinger-type equation for the у -component o f the 
vector potential:

d2 A iy
d x 2

-  [k| + V 0 (x )] A iy (x ) = 0 (17)

where

_ _ V  47rej ui
L ,  c2Tj nV o ( x ) (x) = -

Д2 ch2 (Î)
As is very well known, this equation has only one eigenfunction, vanishing at 
infinity:

A , y ( x ) ~ c h - > ( ï (18)

corresponding to the eigenvalue k| A 2 = 1.

Now we should turn back to the nonadiabatic contribution from the vicinity 
o f the neutral plane x <  y j pjz Д, where PjZ (x )  >  x. Neglecting the magnetic 
field in this region, we can obtain the linearized kinetic equation in the form:

a 5 f ij ej ico
———  + v • V ô  f i j  = —  —  A i y ( x )  vy f 0j exp [ - i o o t  + ik z z]

0 1 1 j с
(19 )
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where

5 f i j  = fij -  f i t

Integrating this equation along the particle’s unperturbed trajectory, we obtain

5 fi i  =
ej foj 

с T.-
ico J" A i y ( x ) v y exp [- ic o r  + ikz vz r] dr (20)

Then the current perturbation causes an additional contribution to the 
‘effective potential’ in Eq. (17):

Х 4тге? f

- З ч  J
d3 v f0j vy —ic j J "  A iy Vy exp [— i(co — kz vz) r] dr

— oo

(21)

For low-frequency perturbations, the main contribution to the integral comes 
from the half-residual part:

w pj -Í7T1/2CO 

С2 | k z | Vthj
(22)

where

4we?n(x)

m;
vthj

2 Ti

For purely imaginary frequency o f perturbations (-ico =  j  >  0), the nonadiabatic 
contribution to the effective potential has the form o f a narrow potential 
barrier in the centre o f the Teller potential well V 0 (x ) (see Fig. 8 ). For, in the 
integral sense, small V i , we can use the quantum-mechanical perturbation theory 
[16] to find the small eigenvalue change:

+ 00

1 -  к? Д2 dx ( 23 )



MAGNETIC RECONNECTION 103

F IG .8. Effective potentials fo r Eq. (17).

This equation serves as the dispersion relation for obtaining the growth rate.
For the case o f a plane neutral sheet, the main contribution to the integral (23) 
comes from electrons and finally

7 = ( l + ! 0  vr1/2 kz vthe ( ^ ) 3/2 ( 1 - k l  Д2) (24)

3. RECONNECTION OF THE IN TE R PLAN E TA R Y FIELD LINES AND 
EARTH ’S MAGNETIC FIELD LINES IN  TERMS OF THE TEARING  
MODES

Since the interplanetary magnetic field vector and the earth’s magnetic field 
vector are not collinear, we usually have the magnetic field component within 
the field reversal layer (see Fig. 4 and Eq. (11a)):

B — B o z t h ^ -  ^  êz +  By êy (25 )

I f  this у-component is strong enough,
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V (x )

V,(x)

X

V0(x ) = -  2 cos2 0/д2 ch2 ( x /Д )

FIG. 9. Effective potential barrier in Eq. (30) fo r  the model o f  a magnetic field in the presence 
o f  the component along the equilibrium current (Eq. (11a)).

We can use the drift approximation everywhere, including the Bz-fleld reversal 
layer, both for electrons and ions. Then we have the following expression for the 
distribution function instead o f Eq. (12):

Here we restrict ourselves to the simplest case o f large by ^  1. For two- 
dimensional perturbation o f the form:

A i(r , t) = [A iy (x )ê y + A iz (x )e z ] exp [~ iw t  + iky y + ik z z]

mj_ 

2 Ti

(28 )

к ‘ A i(r^  t) = 0

the wave-particle interaction resulting in the mode growth takes place mainly 
near the ‘singular’ surface defined by the condition
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Wave-particle interaction can influence the mode development only i f  this surface 
is inside the effective potential well V 0 (x ), i.e. only i f  ky/kz Boz/By <  1.
In this case we can still use Eq. (17) for the adiabatic part o f  the potential V 0 (x ). 
To find the non-adiabatic correction V ! (x ), resulting from wave-particle inter
action, we should make the following changes in Eq. (21 ):

(a) The frequency outside the trajectory integral in Eq. (21) should be 
Doppler-shifted by the quantity ky uj according to the Lorentz transformation 
o f the perturbed electric field.

(b ) In the drift approximation, the particle trajectory is given by

and the distribution function on V|| is shifted by the drift velocity component 
along the magnetic field (see Eq. (27)). Then we rewrite Eq. (21) for V j j (x )  in 
the form:

-  в
r = —  V||T

— oo

where

c k • [T jV n  X B ]

“ *j ~  ej B2 n (x )

—  OO
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We see that the main contribution comes from the narrow vicinity o f the singular 
surface (see Fig. 9):

ico I bv A
| x -x s| < , - ---------

kz vthj

For the low-energy level shift in an effective potential well V 0 (x ) due to the non- 
adiabatic wave-particle interaction, we can again use the quantum-mechanical 
perturbation theory (see Eq.(23)). The integrals in Eq. (23) can be taken 
exactly and we obtain the dispersion relation [17—19]:

к vthe ( _ n V  

' J pe '
co = w *e (x s) + ( ------ - )  (1 -  к2 Д2) (30)

TTu ¿ bv ЧСОпеД/

In the limit o f the weakly magnetized neutral layer (by ~  eè/2),this result, as 
can be easily shown, is consistent with the result o f Laval et al. [18] for the case 
by = 0. A t the opposite limit o f a very strong magnetic field, when the ion 
Larmor radius becomes smaller than the singular region width near x = 0,

TeV /2 ?ьуД
x / Piy i ~ 6eT i / к vthe

by >

/ к Д  \

me \1 -  к2 Д2/ 

Ve. e e

i.e.

(Ti + Те) 

щ "  Tj

We should take into account the electric potential perturbations and ion 
contribution in Eq. (17). This procedure enables us to obtain on a common 
kinetic basis the well-known MHD results o f Coppi [20]:

and demonstrates the continuous transition from the kinetic regime (30) to the 
MHD regime o f inertial tearing instability in collisionless plasma, as shown in 
Fig. 10.
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FIG .10. The dependence o f  tearing-instability development regimes in a collisionless plasma 
from  the value o f  the magnetic field component along the current (i.e. from the angle o f  
rotation o f  the magnetic field in a transition layer).
I:  kinetic resonant tearing mode; I I :  kinetic inertial tearing mode; I I I :  MHD inertial 
tearing mode.

F IG .11. Adiabatic V0(x ) and поп-adiabatic V¡ (x j contributions to the effective potential 
V (xj fo r  the single-mode regime.

As mentioned earlier, this kind o f analysis is incomplete since we restricted 
ourselves to the symmetrical Bz(x ) profile only. The case o f arbitrary Bz (x ) 
profiles was considered by Schindler and Soop [21 ], but only on a plane model 
with By = 0. They have shown that any profile is unstable i f  and only i f  it has 
a field reversal (i.e. when Bz(x ) changes sign at some point x = x0). This 
conclusion may be extended to a more general class o f configurations in the 
presence o f  a constant uniform component o f the magnetic field perpendicular to
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the plane considered, and this is compatible with results o f  Sonnerup [13], 
Gonzalez and Mozer [14], shown in Fig. 5.

To describe the magnetic field lines’ reconnection, we need to consider the 
non-linear stage o f the tearing instability. This problem is greatly simplified in 
two limiting cases: single-mode growth and random-phase approximation for 
the growth o f a large number o f modes. These two cases give qualitatively the 
same result, though the numbers are o f course different. Since we are not going 
to follow precise calculations, we consider here only the case o f the single-mode 
regime. Single-mode .growth for the magnetic field model by Eq. (25) results 
in the formation o f a magnetic island near the singular surface кц(х) = 0 .

The width o f  the magnetic island increases with the wave amplitude:

w = A
2 B,

kz A  B Q2

1/2
(31)

When we are calculating the contribution to V ! (x, со, к ) from the particles 
moving along the closed magnetic surfaces (i.e. within the islands), we should 
take into account that кц oscillates along the particle trajectory. Therefore, for 
such particles |coj| >  кц vp. Particles moving along the unclosed magnetic surfaces 
still contribute to the wave-particle resonant interaction (see Fig. 11). For an 
island width larger than the singular layer width,

w >
to*e by A 

к vthj
P)Z (32)

the resonant interaction decreases rapidly. As a result, the dispersion relation 
takes the form (fo r p¡z T e/Ti >  w >  pez):

1 — к2 A 2 =
COpe

A ) (со -  co*e)
w

—l"
Pez

A со |kz |vthe w2

-1
pi 4 ï2 co -co *i ,

A  I ——:-----  Ьм
Ikz I vthi

(33 )

In principle, particles moving along the unclosed magnetic surfaces make a 
slightly larger contribution to wave-particle interactions near the singular surface, 
where кц(х) = 0. So the contribution o f the wave-particle interaction effects to 
Eq. (33) decreases a little slower (as w ' 3/2 instead o f w -2). But since this effect 
differs for the single-mode regime and random-phase approximation we shall 
not pay it much attention and restrict ourselves to simple estimates.
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FIG. 12. The growth o f  magnetic islands due to development o f  tearing modes with different 
angles o f  propagation with respect to magnetic field (fo r simplicity only the case o f  two 
independent modes is shown).

We see that in the non-linear regime, when w >  pez, the growth rate for a 
diffuse neutral layer <  1) can be larger than the linear one:

,  |kz |vthe Pez
' »?e e l — 7------------by ei w

(34)

Further growth o f the single mode results in the rapid decrease o f the growth rate 
(y ~  w -4  for w >  Pzi Te/Tj). But, as with the hydrodynamic theory o f the tearing 
mode, the growth o f  the magnetic island could be stopped only by quasilinear 
relaxation [ 2 2 ].

In contrast to the toroidal systems for the infinite-plane plasma slab, the 
perturbation wave numbers have a continuous spectrum and therefore the singular 
surfaces can continuously change their position (see Fig. 12). As a result, the 
different magnetic islands can overlap and lead to stochastic diffusion o f  the
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magnetic field lines. Following Ref. [23], we can write the diffusion coefficient 
in the form:

Taking into account that the island width is given by Eq. (31) and that the 
resonant interaction with ions decreases as (Piz/w) 3 for w  >  p\z Te/Ti, we find 
that the diffusion coefficient saturates in this limit:

where is the Alfvén speed in the field By Boz. Combining this result with 
the Parker-Sweet theory o f magnetic reconnection for a plane slab o f 
length L  discussed above (see Eq. (31)), we can find the estimate o f maximum 
reconnection rate for collisionless plasma:

4. TEAR ING  IN STAB IL ITY  AS A  MECHANISM OF THE MAGNETO
SPHERIC T A IL  EXPLOSION

We now turn to the stability analysis o f two-dimensional plasma equilibria 
relevant to the magnetospheric tail problems [24, 25]. We consider here the 
simple model o f the magnetic field:

The particle distribution function corresponding to this model, for the purpose 
o f stability analysis, can be chosen approximately the same as for Harris’s 
equilibria (see Eq. (12)).

The difference in the study o f the stability questions comes from the change 
in the particle trajectory topology near the plane x = 0. Here the x-component o f 
the magnetic field tends to magnetize particle motion under the condition

(35)

(36)

(37)
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For approximately circular orbits o f particles in the normal magnetic field we 
can easily calculate the non-adiabatic contribution to the effective potential 

(compare Eq. (21)):

47re?
V jjtx , íú , kz) = ~ f = r  

c lj
J  d3 v" f 0j ( x , v )  vj_ cos0

dr v^ cos(w xj T +

X exp - ico T  -  i — ^ (cos(coxj r  + 0) -  cos6 ) 
coxj

~ 2 ~ Г Т Г  l A j e - A j I i ( À j ) ]  (39 )c¿ d Aj

where Aj = 0.5 k\ pxj and In (A j) is the modified Bessel function. In 
expressions (39) we have introduced polar co-ordinates in the velocity space 
with the x-axis as the polar axis and have restricted ourselves to the most 
important mode propagating in the z-direction. T his contribution (39) comes 
from particles within the thin layer |x| <  - J p¡z A  where we can describe the 
trajectories o f particles from the bulk o f plasma distribution as slow Larmor 
rotation in the (y , z)-plane (in the Bx field) and (in rough approximation) fast 
oscillations in the |x| <  pjz A region. However, when the x-component o f 
the magnetic field becomes stronger,

we can use the drift approximation for particle orbits and find that the result 
given by Eq. (39) is still approximately valid but already for a wider range o f 
space, i.e. for |x| < (B X/B0Z) Д.

The stabilizing influence o f the x-component o f the magnetic field consists 
o f two effects: (1 ) prohibition o f Landau wave-particle interaction under the 
condition o f Eq. (38 ); and (2 ) the shift o f the ‘energy level’,E = — k2,in  the Teller 
potential well V 0 (x ) due to the change o f height o f the potential barrier V ! (x ) 
in the centre o f this well (see Figs 8  and 13). To  describe the second effect, it is
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FIG.13. Potential barrier height as a function o f  the magnetic field component normal to the 
neutral layer.

convenient to plot the potential barrier height V jj(O ) as a function o f the value 
o f the x-component o f the magnetic field; this is done in Fig. 13. We see that 
for the given mode number m = к Д, electron Landau resonance is destroyed for 
very small values o f  normal magnetic field (see Eq. (38)):

bx =  ~  ^ b le = i? e ( l  - m 2) e i/2 (40)
i>z

A t the same time, the height o f the potential barrier increases and it becomes 
non-transparent. Since the energy level does not exist in either half o f the divided 
Teller well, the tearing mode does not exist until the potential barrier decreases 
with the Bx-field increase and again becomes transparent for perturbations for 
values bx >  b2e- Then the development o f the tearing mode again appears to be 
possible but its growth can be stipulated now only by the resonance interaction 
with ions and therefore this mode is called the ion-tearing mode [26].

Since, in the same way, the Bx-field can quench the ion Landau resonance 
for bx >  bii, when the ion-cyclotron frequency is larger than the growth rate o f 
the ion tearing mode, the ion-tearing mode can in principle exist only within a 
limited range o f Bx-field strengths:

b2e < b x < b j i  (41)

. and only i f  the plasma parameters permit the bn to be larger than b2e.
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substorms.
I —II :  growth phase; I I —I I I :  break-up and expansion phase; and I I I - I :  recovery phase.

In Fig. 14 we have drawn the marginal stability curve in the plane (bx , ei), 
which is obviously described analytically by the equation

b ii(m ,e i) = b2e(m, ei) (42)

Plasma with parameters (bx , eO to the left o f this curve (low  plasma current 
and high magnetic field component normal to the neutral layer) is stable against 
the tearing mode. The lower solid curve on the stability diagram (Fig. 14) is the 
curve b2e (mmin, ei), corresponding to the maximum wavelength 27rA/mmin o f 
perturbations that can develop in the system with finite characteristic length. 
Plasma states below this curve are metastable in the sense that only a finite 
disturbance can lead to instability.

Coppi, Laval and Pellat [15] were the first to propose the tearing mode as 
the mechanism o f magnetic field reconnection in the magnetospheric tail during 
substorms. Later this idea was worked out in detail by Schindler [26], who 
understood that the electron-tearing mode is practically always suppressed by 
the field component normal to the neutral layer and therefore turned his attention 
to the ion-tearing mode. But until more detailed analyses by Galeev and Zeleny 
[24, 25] it was not known why the magnetospheric tail stays quiet for a long 
time and then suddenly explodes.

With the help o f  the stability diagram, Fig. 14, we can give in principle a 
more quantitative description o f the UCLA picture o f  a substorm [27, 28] (fo r a 
more detailed discussion see Ref. [29]). In Fig. 14 the curve I-II shows 
qualitatively the changes o f  plasma states during the growth phase when the 
plasma sheet is becoming thinner (dimensionless parameter ei is increasing) and 
the value o f the Bx-component is decreasing (tail field lines become more stretched
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in an antisolar direction). To draw this curve with real numbers we should solve 
the non-stationary problem for slow evolution o f plasma equilibria in the 
magnetospheric tail. Plasma in the state labelled II in Fig. 14 can be quiet for a 
long time, until the break-up phase o f the substorm is triggered by some finite 
external disturbances, e.g. by a sudden northward increase o f the interplanetary 
magnetic field, as described by Russell [30]. A t this moment the neutral line 
(the merging region) is formed in the magnetospheric tail and reconnection can 
proceed further, approaching the steady-state regime. As already described, 
most o f the magnetic field energy will be transferred to the fast plasma flows 
and only a relatively small part o f the energy may be dissipated immediately 
into the heat by anomalous resistivity and can be used accelerating the particles 
either in the induced electric fields or due to wave-particle interactions.

As was recently shown by simultaneous particle and field observations [31], 
there is a close association between the formation o f neutral lines in the 
magnetotail and bursts o f energetic electrons whose spectrum extends to MeV 
range. The electric field responsible for this acceleration seems to be o f an 
impulsive, inductive nature, as the characteristic time o f magnetic field changes 
(related to the merging region formation) evaluated as an inverse increment o f 
the ion-tearing mode does not exceed a few tens o f seconds. And such fast 
times for fieldChanges are quite sufficient [31] for the desired inductive 
acceleration p f electrons up to the observed energies.

5. DISCUSSION

We have shown that the collisionless tearing instability o f different hot 
plasma (ß ~  1 ) configurations with inverse magnetic fields that are realized in 
the earth’s magnetosphere may be responsible for the macroscopic picture o f 
the reconnection o f interplanetary and geomagnetic fields and also for magneto
spheric tail dynamics during the development o f substorms.

However, this instability and related reconnection processes have a much 
wider range o f applications. Especially promising seems to be the use o f the 
results obtained here for the case o f large-scale structures that form under the 
‘winding’ o f magnetic field lines on the central magnetized body, immersed in a 
high-conductivity plasma. The enormous width o f  the layer, where at least 
one o f  the components o f  the magnetic field changes its sign, excluded the 
possibility o f collisionless dissipation on the base o f current instabilities (having 
the finite current velocity threshold). Thus, the tearing mode is practically the 
only mechanism o f field-line merging in this case.

An interesting example o f such large-scale configuration represents the 
sector structure o f the interplanetary magnetic fields [32]. Mariner-5 experiments
[33] have shown that the width o f the transition layer between sectors is o f the 
order o f 103 to 104 km, which considerably exceeds the ion Larmor radius.
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More detailed discussion is to be found in Ref. [34] where the observations are 
interpreted in terms o f a resistive tearing mode that is scarcely o f importance 
for solar wind conditions. The collisionless tearing results (see § 3),on the other 
hand, for typical interplanetary plasma parameters (T e =  15 eV; T j =  6  eV; 
n =  5 cm-3; vsw s 4 X  107 cm/s; В =  5 у )  show that smearing o f the layer 
between sectors up to the observed width takes place at distances o f  the order 
o f 1 astron. unit = 2 X 1013 cm. The complete disappearance o f sector structure 
due to this highly efficient process can evidently be achieved only at distances 
o f the order o f

is the diffusion coefficient o f  the magnetic field for the characteristic layer width 
equal to the transverse dimension o f the sector structure:

A s — vsw/^®~ 1 astron. unit

Using the real parameter o f solar wind in the expression above, and taking 
into account the diminishing o f the values o f  density and magnetic field with 
the distance from the sun, we can draw a conclusion that the interplanetary 
magnetic field conserves its sector structure up to the distances ~  1 0 0  astron. units 
where the interaction o f solar wind and the interstellar medium begins [3 5 ]. 
However, for astrophysical objects such as the Crab Nebula, having much greater 
cover [36], the field line reconnection process due to the development o f 
tearing instability plays an even more crucial role in releasing the energy o f the 
magnetic field and corresponding plasma heating.
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Abstract

SIM ULATION O F COMPACT B R EA K EV EN  AND IGNITION EXPERIM EN TS.
An analysis is presented that explores the range o f  parameters for which breakeven or 

ignition conditions can be reached in compact D-T burning devices, called Ignitors.

1. INTRODUCTION

The objective o f  the analysis presented is to explore the range o f parameters 
for which breakeven or ignition conditions can be reached in compact D-T burning 
devices [1 ] which we refer to as Ignitors [2].

The main feature o f these devices is to be able to produce, simultaneously, 
relatively high values o f  the poloidal magnetic field, the plasma current density 
and the plasma current. The minimum value considered for the latter parameter is 
2.2 MA, so that an appreciable fraction o f the a-particles produced in D-T reac
tions can be contained.

Here we analyse two reference types o f device. One, called Ignitor-Au, for 
which the confinement configuration adopted is close to that o f  experiments 
such as the Frascati Torus or the Alcator C, in which the auxiliary heating system 
plays a primary role in the heating cycle towards breakeven or ignition conditions. 
The other, called Ignitor-Oh, adopts a tight aspect ratio configuration and can 
sustain higher currents and current densities than Ignitor-Au, so that direct Ohmic 
heating plays a primary role in the heating cycle. As will be indicated later, we 
have also explored a limited number o f intermediate cases and shall report our 
results in subsequent papers.

We start the heating cycle with a plasma density that is below the limit for 
which the centre o f the plasma column can be brought to a high enough tempera
ture for radiation bremsstrahlung emission to be compensated by the a-particle
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heating [2]. The initial density is chosen in such a range that the ion temperature 
is close to the electron temperature up to the desired pre-ignition values while the 
time needed to reach ignition is kept to a minimum. Then the central plasma 
density is increased by injection o f cold plasma at the edge o f the plasma column, 
the heating o f the cold plasma being provided both by the a-particles produced in 
the inner part o f the plasma column and by the external heating systems adopted.

2. S IM ULATION MODEL

2.1. Transport code

Our numerical analysis has been performed by the same code and basically 
the same plasma model as was used to simulate numerically the high-density 
discharges in Alcator [3].

We recall that the electron thermal energy transport is assumed to be 
anomalous, with a diffusion coefficient

-Д _  cTeff E[l
eB Ë

D = -----(1)
an „о  „с

R

С с
where ER is the collisional runaway electric field defined as ER= r?clvtheen; 77 

being the classical electrical resistivity; Teff is an effective temperature that is 
assumed to be constant and is estimated empirically; and Ец is the applied 
longitudinal field. We recall that Teff is a measure o f the fluctuating potential 
o f the microinstabilities that are considered to induce the observed anomalous 
transport.

The particle loss is also considered to be anomalous and is represented by 

Г  = —a DT —  (2 )1 an “  an э 7  ( J

where the parameter a is obtained by estimates based on existing experiments.
The ion thermal energy transport is taken to be purely collisional [3] and the 
same assumption is made on the electrical resistivity, as the characteristic values 
o f  the parameters £,,= vD(1/vthe and Ец/Е^аге very low for the regime o f interest. 
Notice that E B/Er= ^ v j v c\, where 17 B is the actual collisional resistivity that is 
relevant to the regime o f interest. Thus in the trapped electron regime т?ц/т7с1 >  1 
and is an increasing function o f  the radius.

We recall at this point that a commonly considered scaling for the energy 
replacement time is rFa  na2,, a being the plasma radius. We may argue that the 
corresponding Dan would scale as D^œ 1/n, while E q .(l) would give D jn°c (J,,/B)/ 
(nG T1/2 ) where G = \\!щ  and J,, is the longitudinal current density. Thus, in
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evaluating the anomalous transport for Ignitor we use a more pessimistic scaling 
than r  na2 in that G becomes as small as l /б.З at the edge o f the plasma 
column and the considered values for J„/B are larger than those typical o f the 
experiments to which the scaling r «  na2 has been applied, while the increase in 
T 1/2 does not compensate that o f J„/(GB) for the regimes o f  interest.

2.2. Alpha-particle heating

We take into account within the electron energy balance equation, for 
simplicity, the power density produced by the slowing-down o f a-particles due 
to fusion reactions. In particular we adopt the following expression:

PF= 5.15 X IO-25 n2Tj~2/3[exp (-199.4/1-1/3)] X eh (3)

where T¡ is in eV, n in cm '3, PF in W • cm' 3 and equal tritium and deuterium 
densities, nD= nT= n/2, are assumed. The parameter ehis introduced in order to 
take into account the losses o f a-particles due to diffusion. A  more complete 
model replacing Eq.(3) is being formulated and will be included in a subsequent 

report.

2.3. Neutral beam and microwave injection

The power input resulting from the injection o f energetic neutrals or o f 
microwave power is taken into account by a very rough model, expressed by a 
source term with an appropriate but simple radial profile in the electron and ion 
thermal energy balance equations. We may expect that even a very simple model 
can give a sufficiently correct estimate o f the effect o f  neutral beam or micro
wave injection i f  the value o f the prescribed injected power is realistic.

In the case o f Ignitor-Au, which is analysed in Section 4, the relevant source 
term is proportional to the plasma density as it assumes a uniform distribution o f 
the injected particles over the plasma cross-section. Considering an injection 
energy o f 80 keV and the value o f  the electron temperature during injection, and 
assuming classical slo wing-down, we estimate that about 2 0 % o f the injected 
power goes to the electrons and about 80% to the ions.

2.4. Gas injection

No satisfactory transport model relevant to high-density regimes 
(n ~2 X 1014cm-3) has been developed to reproduce the plasma density increase 
observed in the Alcator experiment when neutral gas is injected into the plasma 
chamber [3]. For this reason we cannot compute consistently the development
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o f the density profile during the phase o f the discharge when the density is 
increased. Thus, i f  t = t* is the time at which a density increase is prescribed, we 
model this by

n (r,t) = f (t )n (r ,t * )

f (t )  = 1 + cn * * for t*  <  t <  t* + rn' (4)
Tn

f (t ) = 1 + cn for t >  t* + rn'

where cn and rn are chosen ad hoc and n (r,t*) is the density profile obtained at 
t = t * . This profile is computed from the initial time up to the time t from the 
particle diffusion equation, taking into account neutral recycling at the boundary 
[2 ,4 ].

We do not consider here the energy loss due to ionization and line radiation, 
as this is considerably smaller than the energy necessary to bring the injected gas 
up to the existing plasma temperature. Therefore we include the following 
terms in the thermal energy balance equation for the electrons and the ions:

(5 )

and

ex

where (dn/dt)ex is the rate o f density rise imposed by the rate o f  gas injection.

2.5. Surface heating and current-density distribution

To produce a better distribution o f  the current density and thus decrease the 
value o f  t(r = 0 ) we consider the case where an auxiliary heating system is applied. 
The property o f this is to raise the electron temperature at the periphery o f the 
plasma column preferentially. Thus we assume
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for the auxiliary injected power density into the electron population; the 
corresponding total power is

WA= P ° 7r2 R 0 a2

and, i f  we assume P° =  5 W • cm-3 , we obtain WA=  1 MW, for R 0 =  50 cm and 

a =  2 0  cm.
The current-density distribution is strongly influenced by the form assumed 

for the electrical resistivity. When we assume that no trapped particle scattering 
is produced by the modes that can be excited in the relevant regime we adopt 
the form derived from Hirschman et al. in Ref.[5]:

where

G (r) = ( l - f T ) (1—0.28 f T )

fT = { 1 ( 1  —A )2/[( 1-Д2 ) 1/2(1 + 1.46 Дш )]}/(1 + 0 .7 8 ^ ) 

s/2 q (r) R0 t'e
A  r/Ro, v*

vthe

vfte= (2 Te/me) 1/2

q(r) = 2 îr/t(r)

t(r) is the rotational transform and the average electron collision frequency.
When we assume that the rate o f trapped electron scattering is high enough . 

for all electrons to contribute to carry the current, as in the case o f  a constant 
magnetic field, we adopt rjt = r?cl, i.e. G (r) = 1.

Note that in the former case, when 1, the current-density distribution 
acquires a well peaked profile as G (r) departs rapidly from unity near r = 0. On the 
basis o f the results reported in Ref.[6 ] on the drastically improved stability o f 
resistive modes with poloidal wavenumber m °= 1 , we consider a given current- 
density distribution as acceptable i f  the area over which q(r) <  1 is less than 15% 
o f the plasma cross-section area. Finally, we notice that, given the relatively high 
density regimes in which we are interested, we have assumed Z eff г  1 .
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3. THE IGNITOR-OH

The Ignitor-Oh series o f  devices is characterized by a tight and compact 
magnet structure designed to maximize the contribution o f Ohmic heating toward 
achieving ignition temperatures in a D-T plasma. The auxiliary heating systems 
that can be adopted are chosen with the criterion that they do not have such 
requirements o f access to the plasma chamber as to involve alterations and 
decreased efficiency o f the basic magnet structure. Besides contributing to the 
total injected power, an auxiliary heating system can raise the plasma temperature 
on the periphery o f  the plasma column and therefore lead to a current-density 
profile that is relatively broad. This in turn can permit stable plasma discharges 
with relatively low values o f the safety factor:

BT (r=  0) a 

qs _  R0 Bp (r = a)

An additional means by which this can be accomplished is to decrease the aspect 
ratio to relatively low values such as 2.5 or less. In this case we can have 
q(r = a) =  2.5 and q(r = 0) =  0.8 for reasonable [2] current distributions and 
qs=  2, where q (r) = 27r/i(r) and i(r) is the rotational transform, i.e. the rate o f 
magnetic shear is enhanced in a tight aspect ratio configuration. In assessing the 
acceptable values o f q (r = 0 ) and qs we take into account that in the high density 
and temperature regimes o f  interest the effects o f ion-ion collisions tend to 
improve the stability o f internal resistives modes.

In this connection we shall evaluate the parameter eq , which is the ratio o f the 
area over which q(r) <  1 to the total cross-section area, and consider eq =  0.15 
an acceptable value, as indicated earlier. We also notice that the values o f

8tt
ßn=  ~ 2 ---------- <n(Te+ T;)>

Bp (r = a) e

for which ignition temperatures can be achieved are well below unity, and experi
ments carried out on the Alcator device have indicated that stable discharges can 
be produced for values o f q (r=  a) as low as 2. We shall therefore consider 
qs =  2.15 as a reference value so that q (r =  a) =  2.7 for a current-density profile 
somewhat more peaked than a parabolic one.

In particular, we have carried out our analysis for a set o f reference 
parameters relevant to a device for which a preliminary design study is being 
undertaken [7]:

R0 = 54 cm a = 21.5 cm

BT = 160 kG I =  3.22 MA

q s = 2 . 1 5  B p  =  3 0  k G
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We adopt relatively high densities, close to the limit for which bremsstrahlung 
emission would prevent the system from reaching the ideal ignition temperature 
o f 4 keV. The criterion for choosing a given density value is, in fact, that o f 
decreasing the ignition time to a minimum. This is defined as the time at which 
the a-particle heating exactly compensates ali losses. Thus, after a number o f 
trials, we have chosen optimally n °=  2 X Ю 15 cm-3  as the peak initial plasma 
density.

Referring to E q .(l) giving an expression for the anomalous diffusion coeffi
cient for the thermal energy, we take T eff =  50 eV in most o f the cases that we 
analyse and, referring to Eq.(2), a =  1СГ2 as for the case treated in Ref.[3],

We prescribe parabolic profiles o f density and temperatures as initial values 
with n0= 2 X 1015 cn f3, Te0= Ti0= 1 keV at the centre. The prescribed value 
Bp= 30 kG and the requirement o f a parabolic profile o f the current density J 
determine the initial values o f Bp. Boundary values are at all times: na= 1014cm-3; 
T ea= Тк =10  eV; Bp = 30 kG. Impurities are not considered and we take Zeff = 1. 
This assumption seems reasonable given the high densities considered here, as 
shown by the Alcator results [8 ].

We define t i4 to be the time at which the peak ion temperature reaches
4 keV. This is the ideal ignition temperature where the power loss by brems
strahlung emission is equal to the a-particle fraction o f the power produced in 
D-T reactions. For the density range we consider, t i4 is also about the time at 
which the peak electron temperature is 4 keV. In addition, we define the ignition 
time tj at which the a-particle heating compensates all types o f  power loss from 
the plasma column.

Case (a): In the case where we assume eh= 1 we obtain, in the absence o f auxiliary 
heating,

tj4 — 0.19 s; 0p(t = ti4.) =  0.3; eq (t s t i4) a  0.1

tj =  0.67 s; j3p(t = t j) =  0.53; eq(t =  t ¡) =  0.21

Case (b ): In the case where we take eh= 0.7 we have correspondingly 

ti4 -0 .2 0  s; ßp(ti4) =  0.3; eq(t i4) as 0.11

tj — 1.12 s; j3pj — 0.66; eqj — 0.25

where j3pI = /3p(t = t¡) and eqI= eq(t = tj). The peak ion temperature evolution as a 
function o f  time for these and two other cases is represented in Fig. 1. In addition, 
Figs 2 -4  show the profiles o f  density, temperatures and current density at t = t ¡4 

for case (a). A t the same time, the anomalous electron conductivity confinement 
time is те=  0.37 s, and the classical ion conductivity confinement time is r¡ =  2.3 s,
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indicating that classical conductivity losses are negligible in comparison to the 
anomalous losses.

Nearly equal results are obtained for case (b) at t =  t¿ and we observe that 
this set o f results corresponds to two o f the many cases we have investigated by 
varying the dimensions o f the device, the magnetic field, the plasma current, etc.

To decrease eq(t  = tj) to acceptable values, we have considered the possibility 
o f raising the electron temperature at the periphery o f the plasma column by 
means o f  an external surface heating as described at the end o f  Section 2. We 
assume that the external surface heating is provided from the initial phase o f  the 
discharge onwards. In our computations we have considered several values o f the 
external power PA ; in particular, we find that Р д=  2 MW is required to obtain 
acceptable values o f  eq at =  t = t j .

Typical results for the standard Ignitor-Oh parameters are:

Case (c): PA= 2 MW; 6^= 1:

t i4a  0.18 s; fy (t i4) =  0.35; eq(t i4)  s  0.088

t! ss 0.55 s; /^(tj) s  0.66; eq (tj) s  0.11

The electron and ion thermal conductivity energy confinement times at 
t = t i4 are: re =  0.26 s; r¡ =  1.8 s. A t t = tj the effective power input from 
a-particles is Pa = eh Pa total =  3.3 MW and the total power o f fusion-produced 
neutrons is Pn=  13.2 MW. Figures 5—7 show the profiles o f density, temperature 
and current density at t = t¡.

Case (d ): PA = 2 MW; eh= 0.7

ti4as 0.18 s; j^ (t i4) =  0.35; eq(t i4) =  0.088 

t, =  0.79; ßp(t!) =  0.8; eq (tI } a ^ l 2

The energy confinement times at t tj4 are practically the same as in 
case (c). A t t = tj we have Pa =  3.6 MW; Pn=  20.6 MW. In addition, Figs 8 -10  
show the profiles o f  density, temperature and current density at t = t¡.

The evolution o f the peak ion temperatures as a function o f time in 
cases (c ) and (d ) is represented in Fig. 1. We notice that we have varied Teff in 
order to find the upper value for which the ignition phase can be reached. We find 
this value to be Te f f -  150 eV. In addition, an increase in Teff corresponds to an 
increase in ti4, tj, eqI and t0.



126 BITTONI et al.

[ лач ) 1

F
IG

.2
. 

Ig
ni

to
r-

O
h.

 
Ca

se
 

6h
= 

l; 
Рл

= 
0.

 
De

ns
ity

 
pr

of
ile

 
at 

t - 
fj4 

- 
0.

19
 

s. 
FI

G
.3

. 
Ig

ni
to

r-
O

h.
 

Ca
se

 
eh

= 
1; 

PA
- 

0. 
E

le
ct

ro
n

a
n

d

ion
 

te
m

pe
ra

tu
re

 
pr

of
ile

s 
at 

t = 
t. 

- 
0.

19
 

s.



BREAKEVEN AND IGNITION 127

FI
G

.4
. 

Ig
ni

to
r-

O
h.

 Ca
se

 
eh

= 
1; 

PA
= 

0. 
C

ur
re

nt
 

de
ns

ity
 

pr
of

ile
 

F
IG

.5
. 

Ig
ni

to
r-

O
h.

 
Ca

se
 

eh
= 

1;
 

PA
= 

2 
M

W
. 

De
ns

ity
 

p
ro

fi
le

at
 

t = 
t- 

= 
0.

19
 

s. 
at 

th
e 

ig
ni

tio
n 

tim
e 

f.=
 

0.
55

 
s.



128 BITTONI et al.

FI
G

.6
. 

Ig
ni

to
r-

O
h.

 
Ca

se
 

eh
= 

1; 
PA

= 
2 

M
W

. 
El

ec
tr

on
 

an
d 

FI
G

.7
. 

Ig
ni

to
r-

O
h.

 
Ca

se
 

eh
= 

1; 
PA

= 
2 

M
W

. 
C

ur
re

nt
 

de
ns

ity
 

p
ro

fi
le

ion
 

te
m

pe
ra

tu
re

 
pr

of
ile

s 
at 

th
e 

ig
ni

tio
n 

tim
e 

tj=
 

0.
55

 
s. 

at 
the

 
ig

ni
tio

n 
tim

e 
t̂ 

0.
55

 
s.



BREAKEVEN AND IGNITION 129

s

£

cm
It

tv
о

О

§

s;
¿o

0\
C5
£5

<3
<ъ

I
5
S5
s:

à'
%
<N

Cä
II

a
«
С)

S

00

1 ig
ni

tio
n 

tim
e 

fj-
 

0.
79

 
s. 

ion
 

te
m

pe
ra

tu
re

 
pr

of
ile

s 
at 

the
 

ig
ni

tio
n 

tim
e 

t¡-
 

0.
79

 
s.



130 BITTONI et al.

R t c m ]

FIG.10. Ignitor-Oh. Case eh= 0.7; PA= 2 MW. Current density profile at the ignition time 
t¡= 0.79 s.

We observe that the current density profiles are rather peaked in cases (c ) 
and (d ) in spite o f  the fact that the temperature profiles are very flat or even 
inverted. This is due to the trapped-particle correction to the classical resistivity. 
Computer runs without trapped-particle correction to the resistivity give very 
flat current density profiles in these cases and eq(t j )  = 0. For this reason no 
significant reduction o f  (t j )  is achieved, with or without external surface heating, 
by considering increased anomalous transport coefficients when q <  1 , unlike the 
case considered in Ref. [9 ]. A  further reduction o f eq(t ¡ )  and t0 at t = t¡ can only
be obtained by reducing the total current I. We have obtained the following results
with the standard Ignitor-Oh parameters, but 1 = 2.8 MA, PA= 2 MW and eh= 0.5:

Case (e ): (1 = 2.8 MA; PA= 2 MW; eh= 0.5)

ti4s  0.27 s; ßp(ti4) =  0.48; eq(t i4) as 0.03

t! =  1.5 s; j3p(tr) s  1.18; e ^ )  s  0.04
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FIG .11. Ignitor-Oh. Case eh= 1, PA= 2 MW, and density increase by a factor 4. Peak ion 
temperature evolution T¡(r= 0) as a function o f  time.

The electron and ion thermal conductivity energy confinement times at 
t = ti4 are re =  0.29 s; r¡ =  1.35 s. A t t = tj we have Pas  3.5 MW and Pn =  28 MW, 
as the corresponding average ion temperature is T¿ s  6.7 keV. The high value o f 
t¡ obtained in this case is due to the rather pessimistic choice o f eh= 0.5.

To increase the power produced by fusion reaction, we programme a density 
increase such that the a-particle heating contributes significantly to raising the 
temperature o f  the newly injected plasma. We have seen that it is not convenient 
in the case o f Ignitor-Oh to increase the plasma density before the ignition time t ¡ . 
In fact, to decrease tj it is convenient to exploit the properties o f Ohmic heating 
by beginning the heating cycle with the maximum permissible density and start 
to increase the density only when t £ t¡. Our computations give an estimate o f 
the maximum density increase that can be achieved in a given time r. We choose 
t  =  0 .6  s after a series o f trials, assuming that the considered discharge can last up 
to 1.4 s, including the pre-ignition phase.
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FIG .12. Ignitor-Oh. Case eh= 0.7, PA= 2 MW, and density increase by a factor 3. Peak ion 
temperature evolution T{ (r = 0) as a function o f  time.

Our numerical results show that in case (c ) the density can be enhanced by 
a factor 4 in a time r = 0.6 s, starting at t = 0.6 s, slightly after the ignition time
is reached. A t t = 1.2 s we obtain Pa =  100 MW; Pns  400 MW. A t the same time,
the following average values are obtained:

n = 4.2 X101S cm '3; Te=5.91keV ; T ¡=5 .53keV ; ^ = 2 .6

Figure 11 shows the evolution in time o f the peak ion temperature for the 
considered case.

In case (d ) the density can be increased by a factor 3, starting at t = 0.8 s 
(tj=  0.79 s). A t t=  1.4 s we obtain:

Pa =  37 MW; Pn =211  MW; ñ = 3.3 X 10ls cm" 3

T g  = 5.04keV; T i  = 4.96keV; ^  1.7

Figure 12 shows the evolution in time o f the peak ion temperature for the 
considered case.
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4. THE IGNITOR-AU DEVICE

The purpose o f  the Ignitor-Au device is to make use o f magnet technologies 
that have already been developed and tested in order to realize a D-T toroidal 
plasma in which breakeven conditions are reached. The adoption o f an auxiliary 
heating system compatible with the limited access allowed by the high-field 
magnets employed is an integral part o f the Ignitor-Au design. One o f the uses 
foreseen for a device o f this type is that o f a Toroidal Material Testing Reactor as 
indicated in Ref.[ 1 ]. In this context it is proposed that the magnetic core o f  the 
device be treated as disposable, with the plasma chamber itself serving as the 
material to be tested under a variety o f thermal and mechanical loading conditions. 
The reference parameters we consider for an Ignitor-Au device are [ 1 ]:

R0 =78 cm; a = 24 cm; qs=2.5

BT = 150 kG; 1 = 2.22 MA; Bp= 18.5 kG

S0 =  7.4 X 104 cm2 ; V0= 0.89 X 106 cm3

Here S0 and V0 indicate the surface and the volume o f the plasma surface 
respectively.

Initial and boundary values o f  n, Te, Tj and Bp are given as in the case o f 
Ignitor-Oh. Only n0, na and Bp are changed, as we take n0 = 3 X 1014cmT3 ; 
na= 3 X 1013cm-3  ; Bpa=18.5kG .

In the present case we foresee the use o f neutral injection for auxiliary 
heating o f the plasma as described in Section 5. According to the results o f 
Section 5, we assume that an effective power input PN¡= 4 MW is available 
from the beginning o f the discharge onwards and distribute it to electrons and 
ions as described at the end o f Section 2. The initial density is much smaller than 
in Ignitor-Oh because the Ohmic heating is now smaller, and in order to deal with 
reasonable values o f the energy for the injected neutrals we adopt n0 = 3 X 1014 cm-3  

and reach the stage o f the discharge when the power input due to fusion becomes 
larger than the power loss due to bremsstrahlung, within a time tBr=  0.06 s.

In this case it is convenient to start the density increase phase as soon as 
possible, taking advantage o f the external power input. Thus we can avoid 
operating in low-collisionality regimes, with relatively high temperatures and low 
densities. We follow the ‘radiation tunnelling’ procedure described in Ref. [2] 
and choose t = tBr as the initial time o f the density increase phase o f the discharge.

A  series o f  computations relating to Ignitor-Au show that ignition can be 
reached in a time t¡ =  1.0 — 1.4 s for different choice o f the parameters T ef f , e h , 

P N I  and a. Our final assumptions for the values o f these parameters are

Te ff=100eV; a = 0.01; eh=0.7; PM = 4MW
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FIG .13. Ignitor-Au. Reference parameters: R = 7 8 c m ;  a = 24 cm; j3t = 150 kG; 1 = 2.22 MA; 
PNI = 4 MW; reff = 100 e V; a=0.01; eh= 0.7 .
Peak ion temperature evolution TJr = 0) as a function o f  time. In the considered case the 
density is increased by a factor 7.

We choose the duration o f  the density-increase phase o f the discharge to be 
r=  1.2 s, and assume that a typical discharge in Ignitor-Au can last 1.5 s. With'the 
parameters given above, the density can be increased by a factor 7, reaching a 
peak o f 2.1 X 1015 cm-3  and we obtain:

tßr — 0-06 s; ßp(tBr) =  0.17; eq(tBr) £= 10~3; Te(tBr) =  0.1 s

T i(tBr) =  1-5 s; tj s  0.93 s; /ЗрС̂ ) 2  1.7; eq(t j )  “  0.04

The electron and ion thermal conductivity energy confinement times at 
time tBr are re s  0.1 s, t ¡  =  1.5 s. A t t = tj we have Pa =  5 MW and Pn=  28.5 MW.

The evolution o f the peak ion temperature as a function o f time in the 
considered case is represented in Figure 13.
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5. NE U TRAL INJECTION HEATING FOR IG N ITO R-AU

The method o f  neutral injection heating which, for this device, provides the 
highest efficiency in a wide range o f  operating plasma densities involves vertical 
or quasivertical injection into the upper confinement disc. The confinement discs 
are regions o f space facing the injection windows where the magnetic well (i.e. 
the local mirror in which particles with small v J v L can be trapped and drift out 
o f the plasma in the B X V B  direction) along a field line is suppressed by the pitch 
o f the helical toroidal field. Thus confinement discs exist in regions where the 
slope o f the field intensity, along a given helical line o f force, is higher than the 
slope o f the ripple field, i.e.

ЭВhelical

9s
>

^ripple

3s
(9 )

where s is a parameter along the field line.
This condition can be satisfied in the central part o f the cross-section, for 

symmetric coils where the ripple is low, and in the upper and lower half o f  the 
plasma cross-section where field along a magnetic line varies most rapidly. In the 
case o f symmetric coils the confinement discs look like two ellipses roughly 
centred at the upper and lower half [ 1 0 , 11 ] o f  the cross-section.

Other methods o f injection at high densities would require very high energies 
for the neutrals to penetrate towards the centre o f the plasma. In addition:
(i) tangential injection would require a complicated coil structure for the type 
o f device under consideration; and (ii) perpendicular horizontal injection in the 
confinement discs would lead to substantial losses because o f the beam attenuation 
from the external border o f the plasma up to the confinement discs, which are 
displaced toward the symmetry axis, given the compact structure o f  the magnet.

We consider two possible regimes o f operation for the case o f vertical 
injection:

(a) Low density

For n =  1014 cm-3  and ä neutral deuteron energy o f Wod= 80 keV, the total 
ionization mean free path is X ~  a. Thus the penetration o f the beam into the 
plasma is not a problem. I f  the perpendicularly injected neutral is ionized before 
it encounters the confinement disc, it will drift upwards until it intersects the 
disc and then be confined. The size o f the confinement disc is such that all 
drifting particles produced by the beam are intercepted.

(b ) High density

For n =  10ls cm-3  the 804ceV deuteron is ionised near the surface o f the 
plasma as X ~  a/10. Further penetration has to rely on VB drift. Therefore, the
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FIG. 14. Ignitor-Au. Magnetic field ripple on a vertical cross-section through the centre o f  
the window, the opening o f  which is 8 cm. The upper half o f  the figure represents the 
confinement disc.

ripple has to be high enough in the lower half o f  the section (Fig. 14) to allow a 
fast ion to drift vertically in the local mirror towards the centre without being 
trapped into a banana trajectory (Fig. 15). On the upper half o f the cross-section, 
the ripple has to be low in order to have, as for the low-density case, a relatively 
large confinement disc [ 1 0 ,1 2 ].

Numerical calculations on single-particle trajectory including collisions are 
under way, using the three-dimensional FA R  code (originally developed by the 
Laboratory o f  Fontenay-aux-Roses, France) with an improved small-angle 
scattering mechanism, in order to identify the proper design parameters o f the 
relevant window coil. Meanwhile, to formulate some basic requirements for the 
ripple, we shall give simple estimates.
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FIG. 15. Ignitor-Au. D rift o f  an 80-keV deuteron in the local magnetic mirror toward the 
upper confinement disc as a result o f  the ripple represented in Fig. 14.

The mean field particle density, necessary to give sufficient v,, /vx to the 
purely vL injected deuteron during its ? X  VB drift from the border to the centre 
o f the plasma, so that it can escape from the ÔB/B ripple mirror, is given by

n =  5.3 X 1017 cm-3

fo rA j = 2; Wod= 8 0 k eV ; R0= 7 8 cm ; a = 24 cm; B0= 1 5 0 k G .
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Then for a maximum operating mean density o f nmax ~ 2  X1015cn f3, the ripple 
has to be

>3.7 X 1СГ3 (10)
/lower 

half

to avoid collisional trapping before reaching the central core. In addition, to 
allow the drifting particle to reach the central region, the confinement disc in the 
lower half o f the section has to be almost suppressed. Assuming a sinusoidal 
function for Bhelical and Brippie , the condition (9 ) which defines the confinement 

disc, is

ЭГ (  R ¡ C0S Ф Ш
COS(N0)J ( 11)

where ф is the angle around the axis o f the torus, 5B(r) the peak-to-peak average 
ripple at the radius r, and N the number o f coils.

Writing the poloidal angle 9 = 0 /q, E q.(l 1) becomes

5 B(r) 2 r I sin 0 I 

B0 ~ N R0 q (r ) f

where f  is a correction factor dependent on the actual behaviour o f  the field.
A  numerical computation o f the field for the considered Ignitor-Au con

figuration gives f  =  3.
Thus the ripple configuration o f Ignitor-Au can be schematically summarized 

as follows. In the centre o f the lower half o f  the cross-section the ripple should be

■y )  > 4 %  (12)
■ 'low er 

half

in order to suppress the lower confinement disc. One sees that condition (12) 
is stronger than condition (10). In the centre o f the upper half Of the section 
the ripple has to be

s b \
D  J

'  upper 
half

in order to have a large confinement disc there.
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Among the possible coil systems which can provide such a ripple configuration, 
a solution is shown in Fig. 16(A). To realize the window, an arc o f the turns o f 
the toroidal field coil is removed, lifted outwards over the remaining circular 
turns, and pushed on both sides o f the window itself. The ripple in the vertical 
cross-section through the centre o f the window and the confinement disc in the 
upper half o f  the plasma cross-section are shown in Fig. 14. The relevant coil 
system meets the requirements (10-13 ).

Neutral injection in high-field devices with narrow windows like Ignitor-Au 
obviously require low-divergence beams. This divergence,which can now reach 
±0.3°, is expected to reach ±0.1° in the near future [13, 14] and we shall assume 
the latter value for the following calculations. Assuming a beam steering, we shall 
take at the window a bulk-equivalent current density o f D° o f 0.25 A  - cm-2 , 
which corresponds to an extracted D* current density o f 0.40 A  • cm-2  neutralized 
with an efficiency o f 0.62 corresponding to 80 keV.

Setting the injector at 2 m from the window, assuming an effective aperture 
width o f 4 cm (the coil gap being larger) and a diverging envelope o f ±0.2°, the 
bulk o f the beam has a width 2.6 cm and a length 24 X у /2 cm = 34 cm. For 
four windows the surface is 354 cm2. The total neutral equivalent intensity is 
then 0.25 A  - cm-2  X 354 cm2 = 8 8  A eq Do. Thus the total power entering the 
plasma is 8 8  A  X 80 keV =  7 MW or 1.75 MW per window. The largest losses are 
presumably shared by the ripple diffusion o f the banana orbits and the charge 
exchange o f the residual thermal neutral population. No clear evaluation o f these 
losses can be made at present, but in our opinion they should not exceed 50%. 
Therefore the effective additional heating power is 3.5 MW < P n i <  7 MW.

In this connection we notice that a real injection system does not have 
monochromatic beams and this lowers its effective total heating power. On the 
other hand, if we inject with an angle o f ~  2 0 ° with respect to the vertical direction 
we can have easier and larger access to the plasma, and increase the possible heating 
power (see Fig. 16(B)).

Finally, we estimate that a contribution o f about 10% o f the neutral injected 
power will be given through direct beam-plasma D-T reactions. However, the, 
presence o f  a ripple in the confining magnetic field will spoil the confinement o f 
a fraction o f the a-particle orbits and we have not evaluated here the consequent 
degradation o f their heating power. I f  we also take into account the fact that the 
assumed current for the reference Ignitor-Au parameters is not sufficient to contain 
all the trapped a-particle orbits, we may argue that the assumed value o f 0.7 for 
eh is probably too optimistic.
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Abstract

KIN ETIC T H EO RY  OF SU R FA C E W AVES IN SEM IBOUN D ED PLASM AS.
A kinetic theory o f non-linear wave interaction in semibounded plasmas is developed 

for the specular reflection model. A kinetic field equation is derived on the basis o f which 
resonant interaction o f  surface waves, causing decay and explosive instabilities, is investigated. 
Surface and volume fluctuations in semibounded non-equilibrium plasmas and time develop
ment o f fluctuation spectra due to non-linear wave interaction are considered. A kinetic 
equation for surface waves is derived and its possible applications to the description o f wave 
scattering and radiation in semibounded plasmas are discussed.

1. INTRODUCTION

The electrodynamic properties o f spatially homogeneous plasma are described 
by linear and non-linear electric susceptibilities. Electromagnetic fields are deter
mined from non-linear equations by given charge and current distributions in 
plasma [1  ]; they also depend on boundary conditions i f  plasma is confined in 
some finite volume. A  characteristic feature o f bounded plasma is that there 
exist both volume electromagnetic oscillations with the spectrum o f the same 
type as in infinite plasma (the wavelength o f such oscillations is small compared 
with characteristic plasma dimensions) and collective electromagnetic oscillations 
o f a new type, the surface waves, which propagate along the boundary and damp 
inside plasmas.

The structure o f surface waves essentially depends on the shape o f the 
surface and on boundary conditions. The latter are determined by the type o f 
interaction between plasma particles and the boundary. The simplest description 

o f surface waves may be given within the framework o f the specular reflection 

model, i.e. when it is assumed that the charged particles, reaching the surface, 

are reflected specularly [2—4].
The properties o f different surface waves in the simplest semibounded plasma 

case were investigated in detail in Refs [5 -1 0 ] (see also [11, 12]). The existence 

o f surface Langmuir oscillations in semibounded plasma was mentioned for the
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first time in Refs [13, 14]. Excitation o f surface Langmuir waves in semibounded 
plasma due to the motion o f charged particles along the boundary was investigated 

in Ref. [15]. A  kinetic theory o f high-frequency surface Langmuir and low- 
frequency ion sound waves was developed by Yu.A. Romanov [5, 6 ]. Thermal 
fluctuations due to volume and surface eigenoscillation excitation in plasma 
halfspace were studied in Ref. [16]. Surface fluctuations in semibounded non- 
equilibrium plasma and spontaneous radiation from such plasmas were studied in 
Refs [17—19]; in particular, it was shown in [19] that the surface excitations can 
cause critical fluctuations. An instability, arising from the growth o f ion sound 
surface waves in the presence o f ion-electron relative motion in semibounded 
plasma, was considered in Ref. [10].

When surface-wave intensities become large enough, non-linear effects 
have to be taken into account. Non-linear wave interaction in semibounded 
plasma was investigated in hydrodynamic approximation in Refs [20—22]; in 
particular, the decay instability o f the surface wave was considered in Ref. [20]. 
Non-linear wave interaction in semibounded plasma, causing echo surface 
oscillations, was investigated in the kinetic approach in Refs [23, 24].

In the present paper a kinetic theory o f non-linear wave interaction in semi
bounded plasma is developed for the specular reflection model. A  general non

linear equation for the electromagnetic field is derived on the basis o f which 

different non-linear effects are discussed. Resonant interaction o f three surface 

waves, causing decay and explosive instabilities, is considered. Surface and volume 

fluctuations in semibounded non-equilibrium plasma are investigated, and 

fluctuation spectra time evolution due to non-linear wave interaction is studied.

A  kinetic equation for surface waves is derived and its possible applications to 

the description o f wave scattering, transformation and radiation from semi
bounded plasma are considered.

2. NON-LINEAR EQUATION FOR PO TE NTIAL FIELD IN  SEMIBOUNDED
PLASMAS

It is convenient to investigate surface and volume eigenoscillations and their 
non-linear interaction in semibounded plasma in the same way as in infinite 
plasmas, based on non-linear equations for the electromagnetic field, which may 
be derived from kinetic equations for particle distribution functions and for the 
selfconsistent field. We shall consider stationary spatially homogeneous plasma 
filling halfspace z >  0. Assume that z <  0 halfspace is filled with some insulator, 
characterized by the dielectric constant e0. We first restrict ourselves to con
sideration o f the electrostatic interaction between charged particles (the self- 
consistent electric field is potential in this case).
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The kinetic equations for electron and ion distribution functions and the 
equation for the selfconsistent field in z >  0  halfspace are as follows:

where f  is the deviation o f the electron or ion distribution function from the 
unperturbed distribution f 0 (in equilibrium plasma one must take the Maxwellian 
distribution function for f0), E is the selfconsistent electric field, and p° is the 
external charge density. (The sign 2  in Eq.(2) тедш  summation over the 
electron and ion components). The electric field E in z <  0 halfspace satisfies 
the equation

(we assume there are no external charges outside the plasma).
The kinetic equation (1 ) must be completed by conditions for the distribution 

function f  on the boundary z =  0. Those for specular particle reflection can be 
taken in the form

The electric field on the surface z =  0 must satisfy the usual boundary conditions, 

which are reduced to the continuity o f the electric field tangential component 
and the electric induction normal component.

To solve the set o f equations (1), (2 ) in the halfspace z >  0, we shall use 
the following formal procedure. We perform even and odd continuations o f 
electric field components Ej_ апД E z correspondingly into z <  0 halfspace 
(denoting such continued field E  + ) and suppose that kinetic equations deter
mine the distribution functions in the whole space (we label them f +):

( 1)

(2)

<Ц\> E = 0 (3 )

(4 )

(5 )

The differential operator in these equations is at such electric field continuation 
invariant relative to the substitution (z, vz ) -► (-z , - v z ), so the solutions must
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have the same property:

( 6 )

(it is assumed that the unperturbed distributions f0 are even functions o f vz ). 
Distribution functions f  and f + must coincide in z >  0 halfspace, because

which differs from ( 2 ) by taking into account additional surface charge, 
providing for field normal component discontinuity on the boundary. (External 

charge density p° is assumed to be continued into z <  0 in an even way.) We 

continue the electric field, governed at z <  0 by Eq.(3), into halfspace z >  0 

in a similar way. This field (denoted by E~) satisfies the equation

The solution o f Eq.(7) at z >  0 determines the electric field in plasmas 

(E (r) =^E(r)), and the solution o f ( 8 ) at z <  0 is the electric field outside the 
plasma (E ”(r ) =  E (r)). The following boundary conditions must be satisfied on 
the plasma surface:

relations ( 6 ) at z =  0 ^ d  directly to the boundary conditions (4). 
The electric field E + satisfies the condition

(7 )

c l i v E "  -  - Z E [  ( х ,^ г = 0 ) с Г ( н ) (8)

Ë î u . j f . z - o )  = Е Г 1 х (у , г  = 0) (9)

( 10)

The space Fourier transformation o f Eq.(7) is

t! ( ID

and, due to the longitudinal character o f the field,

( 12)
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The Fourier-transformed Eq.(8 ) takes the form

U E j  ~ 2 E l t ( 0 ) (13)

The value E¿£ (0), entering (11), may be found from the boundary conditions. 

Due to (10),

Using (13), E¿£ (0 ) may be easily expressed in terms o f E j ï  (0). Indeed,

SO

(14)

And as, from (9), it follows that

E ^ o ) . *  E l t ^ o )

then Eq.(l 1) may be written as

Л Е {  -  U í < t « í f  * J > Î )  - 2 l£ .E ;e i(o ) (15)

where

^ o )  '  i x  i ^ *  (16)

To simplify the notation we shall omit the plus sign, i.e. we shall write E instead 
o f E+ .

Performing space-time Fourier transformation o f the kinetic equation (5 ) 
and solving by the successive approximation method the equation obtained, we can 
write f t  as an expansion in a series o f field intensity E^w . Substituting this
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expansion into (15),we obtain the following non-linear equation, which entirely 
determines the electric field in the part o f the space filled with plasma:

homogeneous plasma. The electric field outside the plasma can, according to 
Eqs (13), (1_4) and (16), be expressed directly in terms o f  the solution o f  Eq.(17):

Thus determination o f the field in the plasma halfspace reduces to the solution 
o f the non-linear equation (17).

3. DISPERSION EQUATIONS FOR VOLUME AND SURFACE WAVES 
(L IN E A R  APPROXIM ATIO N)

Neglecting non-linear terms in Eq.(17) and taking external charge density 
equal to zero, we obtain the basic equation o f  the linear approximation, which 
describes eigenoscillations in semibounded plasma:

where e(co, к ) is the dielectric permittivity; k^ ( w 1 , ; co2, k2) and
к(3 )(соь  k t ; co2, k2 ; co3, k3) are the non-linear susceptibilities for infinite

(19)

Here and further on we shall use the following notation:

(20 )
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i.e. E j^  is the value o f  the field intensity tangential component on the plasma 
surface. It is easy to obtain from (19) the following equation for EJ" w :

5 (ц > Д ) Ej.^ = 0  (21 )

where

Ç l u i x )  «  1 t  ják, (22)

It follows from (19) that eigenoscillations o f two types -  volume and 
surface — can exist in semibounded plasma.

The dispersion equation for volume eigenoscillations (Ekw Ф  0, E j^w =  0) 
is determined by the same condition as in infinite plasmas:

e i » , î ) « o  (23 )

We use the notation for the eigenfrequencies, which are solutions o f
(23) at fixed values o f k, and present the eigenoscillation field in the form

+ е ^ < ? (и > м о Е) }  (24 )

where EJ" and 0J" are initial amplitude and phase. Using boundary conditions (9) 
and ( 1 0 ) and relation (14), it is easy to show that

E- =  - i -  idle -*-F g  
kt» 2H6e J aK* к

and as EJ", and co j are even functions o f kz, the following condition is 
satisfied for the volume oscillations:

E ? « 0

The dispersion equation for the surface eigenwave ( Е ^ ш Ф  0) is determined 
by the condition

-  0 (25 )
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We denote the eigenfrequencies o f surface oscillations by and present the 

surface oscillation field in the form

(26)

As e(co,k ) Ф  0 for surface waves, it is easy to find the total space component 
o f  the field for the surface oscillations from (19):

It is not difficult to show that, when moving away from the boundary, the surface 
oscillation field diminishes exponentially.

4. SURFACE WAVES

We now consider different types o f surface waves in semibounded plasma, 

determined by the dispersion equation (25).

The dispersion o f both surface and volume waves in the high-frequency 
domain is determined by the plasma electron component. The eigenfrequency 

and damping coefficient o f high-frequency surface waves in the long-wave limit 
a2 k2 <  1 (a is the Debye radius) are described by the formulas:

Surface wave dispersion in the low-frequency domain essentially depends 
on both electrons and ions. Suppose that the electron temperature is much 
greater than the ion one T e >  T¡ (strongly non-isothermal plasma) and consider 
the frequency domain, satisfying the condition

In this case we can use the following approximate expression for the dielectric 
permittivity:

(27)

(28)
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and then it is easy to find the value ( 2 2 ):

£ - 1 - ^
[T T j l . ’

Equating f(w , lc )̂ to zero, we find two roots o f the dispersion equation:

(29)

CO1 =
Q .

(30)

Taking the plus sign, we obtain the eigenfrequencies o f the surface waves in the 
long-wave and short-wave limits correspondingly:

tO.- =■

(31)

I f  the minus sign is taken in (30), the surface wave eigenfrequencies are 

correspondingly equal to:

ии о . и 4 а‘1:;£‘ х

Q<
Cü¡* =

«  Í 

al k\ » i

(32)

1 1 Н . - Я Й

these expressions are valid for e0 =  0. We mention that the eigenfrequencies (31 ) 
are less than the ion Langmuir frequency, while eigenfrequencies (32) exceed it.

The high-frequency electron and low-frequency ion sound and ion surface 
waves considered are characterized by positive energy. In semibounded non
equilibrium plasma, surface waves with negative energy can also exist. For 
example, we consider plasma with velocity u, parallel to the boundary. Neglecting 
ion thermal motion, we can use the following approximate expression for 
plasma dielectric permittivity:
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valid for frequencies со k^s. Substituting (33) into the general formula (22) 
and integrating over kz, we again obtain for f(co, kj_) expression (29), in which
e¡ should be understood as

Equating then f(co, k¿) to zero, we can write the dispersion equation in the form:

(34)

Consider the long-wave limit a2k2 ^  1, and assume that, approximately,

-  1 *  2 а ^ 0

Taking the plus sign in (34), we can rewrite the dispersion equation as 

1 «z 11 л2 Q l

Supposing that the beam density is small enough (17 1 ), it is easy to find the
roots o f this equation, corresponding to the eigenfrequencies o f surface waves:

wi!1 = kvUs

* -  L i  - Щ
ß ;

j ___ DL
c ^ i  С И )1

lO

(35)

Waves corresponding to eigenfrequencies соФ and c o ^  are characterized
kĵ cu kjco ( 'y 'i

by positive energy, while the wave corresponding to eigenfrequency gj\ï > isk±co
characterized by negative energy (Э£/Эсо <  0 ).
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Taking the minus sign in (34), we obtain the dispersion relation in the form 

1 . * . < «

The roots o f this equation determine the following surface wave eigenfrequencies:

kj.

to

l*>

1 R
.

O 
H

U (LY
(36)

|1 а1С.Ь0

(expressions for and со ^  are valid fo r ( lq ï î ) 2 >  Í 2f ). Waves with 
z t Hl

frequencies о ;Ф  and соф , as in the previous case, are characterized by positive

(?)'
kj. м.

energy, and the wave with frequency co^-1 by negative energy.
к

Consider now surface waves in semibounded plasmas in an external constant 
and a homogeneous magnetic field. Assume for simplicity that the magnetic field 

is perpendicular to the boundary. The dielectric permittivity o f magnetoactive 
plasma in the high-frequency domain is determined by the expression [25]:

where

(37)

b m . o  > й п . ~ и  |кг\з

Consider waves with frequencies close to multiple electron cyclotron frequencies 
If'AWgWjw-n.«,! »  Jk*| S,



and for f(co, kj) we obtain

*  1 + г ....T l  ^  (38)

\ 1+о*рД1"Ц)

So the dispersion equation for surface waves with frequencies close to multiple 
electron cyclotron frequency may be written as follows:

U - M p )  - ¡ А г А И - е ;  ■ i- i 0

and we find surface wave eigenfrequencies in magnetoactive plasma:

Wj. -  (1 + L )  M 0 b (39)

where

S ,  _____________Ш _____________  Ä  J

Taking the imaginary part o f f(co, k¿) into account, we obtain for the damping 
coefficient (7^  ^  co^)
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where

Thus a weakly damping surface wave with frequencies close to multiple electron 
cyclotron frequency can propagate in semibounded plasma in a normal-to-the- 
boundary external magnetic field.

5. NON-LINEAR INTERACTION OF SURFACE WAVES

Non-linear interaction o f volume and surface waves in semibounded plasma 
is described by the general non-linear equation (17). Assuming that there are no 
external charges, we rewrite this equation in the form:
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Using the multiple time-scale expansion method, one can derive from (42) 
a hierarchy o f equations which determine the time dependence o f amplitudes 
due to non-linear resonant wave interaction.

The simplest example o f non-linear resonant wave interaction is the three- 
wave resonance, which takes place when the frequencies o f interacting waves 
satisfy the condition

=  (43)N  *4 к

It is obvious that the three-wave resonance in semibounded plasmas is possible 

in the case o f interaction between three volume waves, two volume waves and one 

surface wave (two cases are possible: a surface wave is created as a result o f the 

interaction o f two volume waves, and interaction between a volume wave and 

a surface wave leads to the creation o f a volume wave), and three surface waves. 

When there are no three-wave resonances, the four-wave resonant interaction is 

the most essential, and it is possible under the condition that

We restrict ourselves to a detailed consideration o f the resonant interaction 
o f surface waves. Multiply Eq.(42) by k^/(ke(co, k ) )  and integrate over kz, and 
then, taking the surface character o f interacting waves into account, express the 
fields Ej^ Wl, Ejf2Cj2, ... , using (27), in terms o f the surface components

? 2iw 2 ’ ■" • a result the basic equation, describing the non-linear 
interaction o f  surface waves in semibounded plasmas, may be written as follows:

(44)
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where and are plasma non-linear surface susceptibilities:

(46)

*** (47)

Now we apply the multiple time-scale expansion method to the non-linear 
equation (45). The fields o f  surface waves in the first approximation are deter
mined, as before, by expression (26), but due to non-linear wave interaction, the 
amplitudes E¡* and phases 0^  should be considered as slowly varying functions 
o f time. Equations for time dependence o f amplitudes Ej* and phases may 
be found from the condition that the secular parts o f higher-order approximations 
o f Eq.(45) should turn to zero. Under the condition o f three-surface wave

The equation for time dependence o f the linear approximation amplitude o f 

surface waves is

I f  condition (48) is not satisfied, then the correction to the field in second 
approximation is expressed in terms o f fields in first approximation in the 
following way:

resonance,

(48)

d  * e "‘f a  =  i  1 
à t Kl a

-i

(50)
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Amplitude and phase-time dependence may be found from the removal o f the 
secularity in the third approximation equation. Resonant interaction takes place 
if

(51)

The equation for surface-wave field time dependence is, in the case o f four-wave 

resonance, as follows:

1  £ . -
' i t  4  * - г Ф ; А )

~i(Or

r ¡ r ~ T  t  ̂

y ( s) íü r  к • cd" if  ' ü* £  i l  F -  F-* F * e / ^ ' 1 ^~ Z  i % >  u J %  ’ / Ч А й  bu (52)

The prime near the sum symbol on the right-hand side o f Eq.(52) means that it 

is necessary to take into account all possible combinations o f waves which are 
in accordance with the resonance condition (51) for different signs o f frequencies.

6 . THREE-WAVE DECAY OF SURFACE WAVES

Consider resonant interaction o f three surface waves with frequencies 

and and fixed wave vectors k¿, k ^  and kjj., satisfying the 
resonance conditions:

tóí n = u )ú  . ¡ f u  + í u  -  Ëi. ( 5 3 )

Each o f the interacting waves is characterized by the energy

\ / £<> \ c)SC^Fiikj.) ip
W f .  - S F t ^  W  (54)to.
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Energies o f separate waves may be both positive and negative (the character o f

Then the expressions for energy and momentum o f surface waves take the form:

Using definitions (55), we can write Eq.(49) in the form o f a Schrödinger 
equation in interaction representation:

Taking into account the symmetry properties o f plasma non-linear susceptibilities 

к ®  (w j ^ ,  ÏCj j_; o o , к^ц)> it is easy to show that amplitude time dependence 
for surface waves with frequencies and is described by the equations:

which contain the same matrix element as in (57). The set o f coupled equations 
(57) and (59) gives a full description o f  three interacting surface-wave dynamics. 
This set may be solved exactly [1, 26, 27].

When three surface waves with one and the same sign o f energy (positive 
or negative) are interacting, i.e. when

wave energy is determined by the sign o f the derivative i^))/3ojj^.

We introduce for convenience amplitudes A t* and sign factors st? :i

(55)

(56)

(57)

where V¡ú,-,íuik» is the interaction matrix element

(58)

(59)

(60)
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then a decay instability arises in the system. Consider a wave with frequencyV

As a result o f  resonant interaction,amplitude A¡* during the initial stage o f time 
evolution changes slightly, while amplitudes A ^  and Aj+ grow exponentially 
with time. The growth rates o f waves with frequencies coj^ and depend on 
the amplitude o f the wave with frequency oojf :

A  value, inverse to (61), determines the decay time. As an example o f surface- 
wave decay interaction, one can indicate the decay o f a surface Langmuir wave

decay o f a surface cyclotron wave with frequency = 2cjg into two surface 
cyclotron waves with frequencies =coB (in magnetoactive plasma), and so on.

In the case o f resonant interaction o f three surface waves with energies o f 
different sign, e.g. when

an explosive instability arises in the system, i.e. the amplitudes o f interacting 

waves turn to infinity at some finite time tœ. The wave with negative energy 

gives energy to the waves with positive energy (or the waves with negative energy 
give energy to the wave with positive energy), and the amplitudes o f interacting 

waves grow to infinity in spite o f total energy conservation in the system. By 
means o f appropriate choice o f initial condition, we can provide the amplitude 
o f the most intensive wave (at zero time) to develop in time according to the law:

The explosion time t(JO is determined by the initial amplitude and the non-linear 
interaction matrix element:

coj^, which at zero time t =  0 has large amplitude

(61)

into surface Langmuir and ion sound waves (in strongly non-isothermal plasma),

(62)

(63)

(64)

Explosive instability can take place in semibounded plasma with compensated 
ion beam due to resonant interaction between three surface waves, dispersion 
o f  which is determined by (35) (or (36)).
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When considering fluctuations in non-equilibrium semibounded plasma it 
is convenient, as in the infinite plasma case, to use a non-linear equation for a 
field with fluctuation sources, which may be derived from Maxwell equations and 
the equation for the microscopic density, describing particle motion in plasmas.
We restrict ourselves, for simplicity, to consideration o f the potential field and 

assume that the plasma in the halfspace is homogeneous and stationary. We 

separate the fluctuation part Sf o f the microscopic density and present it as a 

sum o f the microscopic density fluctuation part in the absence o f particle inter
action Sf0 and the difference between the exact microscopic density and the 
microscopic density for non-interacting particles f. The value f  and the microscopic 
field ?  are described by equations which differ from ( 1) and ( 2 ) only by the 
additional terms, respectively,

7. FLUCTUATIONS

*»a I f o e î ^ à f

Assuming that specular reflection conditions are satisfied on the surface, and 
continuing the electric field outside the plasma as before, we obtain for f + an 
equation determined in the whole space. Presenting the solution o f this equation 
in the form o f an expansion in a series o f  field amplitude and substituting it 
into the expression for induced charge, we thus obtain the following non-linear 
equation for the fluctuation field:

. -  _  -iül 0 °  
к к М<*>

iff i (65)
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where is the fluctuation charge density due to the random motion o f the 
separate charged particles:

ft» -  E e fd f r i f ï .  (66)

(p ° (z ) is continued into the halfspace outside the plasmas in an even way);
Se and 8 k ^  are fluctuation variations o f dielectric permittivity and non-linear 
susceptibility.

I f  the field intensity is small and non-linear effects are negligible we obtain 
from (65), in linear approximation,

Ы (б?)

and the surface fluctuation field Ej^w satisfies the following equation:

(6«

Relation (67) connects the fluctuation field in plasmas with distribution 
function fluctuations in the absence o f particle interaction. Using this relation, 
we can express field correlation functions in plasmas directly in terms o f 
correlation functions for the system o f non-interacting particles.

Spectral distribution o f distribution function fluctuations neglecting 
particle interaction (but taking into account specular reflection from the 
boundary) is determined by the formula:

The first term on the right-hand side o f  (69) describes fluctuations in an unbounded 

system in the absence o f particle interaction; the second term is due to particle 

specular reflection from the boundary. Integrating (69) over velocities,we find 
spectral distribution o f charge density fluctuations neglecting particle inter

action (but taking into account the reflection from the boundary):

[ t e : ) +î ( W (70)



164 SITENKO

Using Eq.(68 ), we determine the electric field surface fluctuation spectral 
distribution:

<E2>,
y  ( P b  /У»/* iTxiO 
h .

(71)

Expressing the field surface component E^-^ in (67) in terms o f the
fluctuation charge density p , we obtain, as before, the total field fluctuation

к со
spectral distribution in semibounded plasma:

IGtu1 t!

k è a L 1
L (72)

The first term on the right-hand side o f (72) describes the fluctuations due to 
volume field oscillations in semibounded plasma. As this term contains delta- 
functions o f the difference or the sum o f kz and kz, it exceeds all other terms 
in (72) in the corresponding region o f kz and k'z magnitudes (volume fluctuation 
domain). So the electric field volume fluctuation spectral distribution in semi
bounded plasma may be written approximately in the form:

с \  _ 16̂  ^РЬРЬ'^ЫД /73ч
l* kV1 £ № £ * ( « ? )

We note that, by integrating (72) over kz and kz components, we immediately 
obtain surface fluctuation spectral distributions (71).

Expressions (71) and (73) are valid for the description o f the electric field 
surface and volume fluctuations both in thermodynamic equilibrium and non
equilibrium (but stationary and stable) plasmas. Expressions (71) and (73) may 
be essentially simplified for thermodynamic equilibrium plasma. Noting that, 

in equilibrium plasma,

(74)
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we can present surface and volume fluctuation spectral distributions in the form :

In the spectra o f surface and volume fluctuations, in addition to a wide 
maximum in the low-frequency domain due to the random motion o f charged 
particles, there are also sharp maxima, corresponding to collective surface or 
volume field fluctuation oscillations. Spectral distributions o f surface and volume 
fluctuations near eigenfrequencies are determined by the following expressions:

We note that intensities o f fluctuation oscillations in non-equilibrium plasma 

may essentially differ from the thermal level. Intensities may increase greatly com
pared with (77) and (78) i f  the plasma state is near the kinetic stability threshold. 
Non-linear interaction o f fluctuation oscillations must be taken into account in 
such a case.

We separate in (65) the part corresponding to surface wave non-linear inter

action. As a result the equation may be rewritten in the form :

(75)

(76)

where
(79)



166 SITENKO

(80)

and so on. In order to describe the fluctuation field, taking the non-linear inter

action into account, it is necessary, generally speaking, to find not only the 
quadratic correlation function (E2>j^w , but also the higher-order correlation 

functions (i.e. the third and fourth orders in our approximation). Multiplying 
successively the left- and right-hand parts o f Eq.(79) by themselves, we can 

obtain a set o f non-uniform integral equations which determine a consequence 
o f these correlation functions. In particular, we obtain the following equation 
for the second-order correlation function:

-¿ птI  i iV :w ;;»Ä)r<El> ,<e‘) ,

uf.lL

where the value a is expressed in terms o f non-linear susceptibilities,

a w l y . K )  - 1|

+ . Зу ц к ;  и  £ г В ;-[;) (81)
S С 0,0)

and values b and q are expressed in terms o f correlation functions o f 
fluctuation sources,

q"„ = {fíirV  T ■ + (82)

Кг,*!

Using Eq.(80), we can find fluctuation field spectral distribution, taking 
into account non-linear surface wave interaction. This interaction, in particular, 
causes additional maxima in the spectrum at combination frequencies, as well 
as saturation o f critical surface fluctuations in non-equilibrium plasma by surface 
oscillation eigenfrequency non-linear shifts.

Equation (80), which determines the spectral distribution o f electric field 
surface fluctuations, was derived on the assumption that this distribution is 
stationary. But in real conditions, taking into account non-linear interaction o f
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the surface waves together with linear damping or growth o f oscillation leads 
to a possibility for the field fluctuation spectral distribution to change in time.
I f  particle distributions are stationary, the equation for surface fluctuation spectral 
distribution time evolution may be derived from (80) by substituting

5  (to .k ) *  t 1 (83)

and taking the imaginary part. As a result we obtain

kxü

> 1  Jra ~  i ,  1 к1)Г<Е% ,(Е*)

i- Jm. Y.

(84)

This equation describes the time dependence o f  the spectral density <E2>ĵ co 
due to linear dissipation and non-linear wave interaction. It is not difficult to 
derive a kinetic equation for surface waves in semibounded plasmas on the basis 
o f (84).

8 . KINETIC EQUATION FOR SURFACE WAVES

The general solution o f Eq.(84) in linear approximation is

= < В гХ  Ï  Ti I ^ ) ( í ( ü ( 85)

where the first term, which is determined by the non-uniform part o f  (84), 
characterizes the stationary level o f surface fluctuations, and the second term 

describes surface eigenoscillations o f the electric field due to the initial conditions. 
The stationary surface fluctuation level in equilibrium plasma is determined by 

temperature; therefore we can neglect thermal oscillations i f  the induced 
oscillation level is high enough.
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Substituting spectral distribution (85) into (84), we obtain the following 
equation for the intensity o f oscillations o f a certain type :

X 6 (W|rT 1 ^

TTz Y . { 
i<.

+if *<£ (w ^  ^ к' I 7>, IT
*4 ki 1 1 kl» 1 1 4 -i l Гч1 4 1

(86)

This equation describes surface wave dynamics, taking into account both inter
action between themselves and with surface fluctuations in plasmas. I f  we 
neglect in ( 86 ) the fluctuation oscillation intensity

and the value

which is connected with particle distribution fluctuations, we obtain a kinetic 
equation for surface waves:
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s f 4 *

+  i V r £ K , L í t U t , , I y I t , I b  (87)
VL

The kinetic equation (87) describes changes o f surface wave spectral density 
due to linear dissipation and non-linear wave-wave and wave-particle inter

action. The three-wave decay processes, i.e. transformation o f two waves into 

one and decay o f the wave into two others, are taken into account in (87). In 

addition, induced scattering o f  waves on particles is taken into account, which 

causes additional damping o f waves -  non-linear Landau damping [28].

As already mentioned, the kinetic equation (87) is valid only when wave 
intensities are large enough and fluctuation oscillations in plasma may be 
neglected. That is why scattering and transformation o f waves due to inter
action with fluctuation fields are not described by (87). In contrast to (87), the 
kinetic equation ( 86 ) takes into account interaction between waves and 
fluctuation fields and so may be used for the description o f  wave scattering and 
transformation on fluctuations in semibounded plasmas. Equation (84) also 
allows the description o f scattering o f charged particles on electric field fluctuations, 
accompanied by bremsstrahlung. That is why, using the generalization (taking 
into account not only potential but also vorticity electric fields) o f  Eq.(84), we 
can investigate the spontaneous radiation from plasma into the surrounding 
medium. This radiation may differ essentially from thermal emission in non
equilibrium plasma.

9. NON-LINEAR EQUATION FOR THE FIELD (G ENERAL CASE)

We now consider a non-linear equation for the electric field in semibounded 
plasma without the assumption about potentiality o f the field. In such a case, 
besides the self-consistent electric field, the self-consistent magnetic field also 
enters the kinetic equation. We continue the self-consistent electric and magnetic 
fields into space outside plasmas (the components lfj_ and Bz,respectively, in the 
even and Ez and Bj_ in the odd relative substitution z ->•- z )  and supplement the 
definition o f the distribution function f  as in the case o f  the potential electric 
field. Induced current density in semibounded plasma is expressed in terms o f 
linear and non-linear susceptibilities o f  infinite uniform plasma, and space 
limitation leads to additional surface current in the field equation. The non-linear 
equation for the electric field in semibounded plasma (in the absence o f  external
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sources) may be written as

where В ^ ш(0 ) is the magnetic field on the boundary

( 8 8 )

к Vi (89)

Supposing that there is an insulator with dielectric permittivity outside the 
plasma and,using the boundary conditions for fields, it is not difficult to show 
that

(90)

where

{*& -*•  ’
l«£-£e

Now we can rewrite the basic non-linear equation for the electric field in semi

bounded plasma in a closed form:

The linear approximation equation for the field in semibounded plasma is

А^»,МЕ;Еи* |^W ,bEjiiO-0  (92)
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where is the electric field on the boundary

"  W ° >  "  5  Н Ц г .  <93>

It is not difficult to derive from (92) the following dispersion equation for the 

surface waves:

4  * 4 1 &  h ï  ̂  ̂ lU)>̂  ' I = 0 <94>

When particle distribution is isotropic, the dispersion equation (94) decomposes 
irito two independent equations:

i n l - £o ( X  -------- = 0  W )
J M w.k) V

1 +

—  U \ - C 0 f d k ,  -— !
> ru  ’  *• J £*(<•>,

С £o с Í ¡4
■f ------—  t = 0

Trw frf] - €0 J к1 I £4(чЮ"*11|  C96)

corresponding to surface oscillations with different polarizations o f the electric 
field (s and p are the polarizations).

The non-linear equation (91 ) makes it possible to investigate three-wave 
decays in semibounded plasma in the general case and is basic for the derivation 
o f  the kinetic equation for waves, which also describes the transverse electro
magnetic waves.
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Abstract

PARAMETRIC EXCITATION.
General aspects of the theory of parametric instabilities are surveyed. First, the basic 

concept of the parametric excitation is explained and its characteristic features are described 
with the use of the Mathieu equation model. Two specific types of instabilities -  resonant 
type and non-resonant type purely growing instabilities -  are specifically discussed. The 
theory is then extended to a general three-mode coupling problem in a uniform medium and 
a physical mechanism of the instability is presented. A brief classification of various instabilities 
is also presented. Finally, some geometrical effects on the resonant decay instability are 
discussed based on physical rather than mathematical arguments, with particular reference to 
the absolute versus convective types of instabilities.

1. INTRODUCTION

Parametric instability is an instability o f natural oscillations due to the 
periodic modulation o f a parameter which characterizes the oscillation. Consider 
the equation o f a harmonic oscillator:

d2X (t) , _ 2

dt2
+  f t 2X (t) =  0 (1 )

This equation is characterized by a single parameter Í2,which is the frequency 
o f the oscillator: I f  this parameter is modulated periodically in the form

£22 = Í2 2 [1 + Q (t ) ] ,  Q (t +  T ) =  Q (t) (2)

where £20 is the frequency, in the absence o f modulation and T  is the modula
tion period, the oscillation o f  X (t ) amplifies when certain matching conditions 
are satisfied. For the case o f weak modulation, i.e. IQ I ^  1, matching condi
tions are given by

Í20T — П7г (n =  1, 2 , ... ) (3)

173
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Oûn

I « d V
FIG .l. Stretched string (natural transverse vibration frequency П0) with one end fixed  
to a wall and the other end attached to a tuning fo rk  o f  frequency Wo

l f  one o f these conditions is met, a strong coupling is produced between the two 
natural oscillations, X ~  exp [— i£20 t] and X ~  exp [ii20 t], due to the modula
tion, and this coupling results in the amplification o f the natural oscillations by 
subtracting energy from the modulator. We note a similarity o f the matching 
conditions (3 ) to the Bragg reflection conditions for the electron in a periodic 
potential in solids [ 1 ].

The first systematic investigation o f the parametric excitation was made 
by Lord Rayleigh [2]. He considered a stretched string with one end fixed 
and the other end attached to a tuning fork (see F ig .l). When the frequency 
o f the tuning fork, co0, is adjusted to twice the natural frequency o f the trans
verse vibration o f the string, £20 , i.e. oo0 =  2 f l 0 , then the transverse vibration 
is amplified. In this case, the oscillation o f the tuning fork modulates the 
tension o f the string, which determines the frequency o f the transverse vibration, 
and the condition w 0 =  2£20 corresponds to the condition (3 ) for n =  1.

A  more familiar example is a child’s swing. The child moves downward 
every time the swing comes to the bottom and the child’s motion produces a 
periodic modulation o f  the effective length o f the swing and hence its frequency 
at twice its value, again corresponding to the case n =  1 o f the condition (3).

In plasmas, we often encounter a large-amplitude monochromatic oscilla
tion which is excited by some external sources, such as an electromagnetic 
wave, electron or ion beam, etc. Such a large-amplitude oscillation can act as a 
modulator o f plasma parameters which characterize the dispersion relation o f 
the natural oscillations in the plasma. Parametric instabilities resulting from 
the modulation then strongly affect the efficiency o f the energy deposition 
rate o f the external source on the plasma. The effect is not simply an excitation 
o f some discrete number o f natural oscillations, but it often results in an evolu
tion o f a strongly turbulent situation or in a complete modification o f  the plasma 
profile. Phenomena o f parametric instabilities are therefore important not 
only in fusion research but also in the basic study o f  non-linear problems.

I shall start by a simple model, the Mathieu equation model, to demonstrate 
the basic features o f the parametric instability, and then generalize the argument 
to more complicated situations where a modulator excites a set o f high- and
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low-frequency oscillations, showing some examples in actual plasmas, and 
finally discuss some geometrical effects on the instability characteristics by 
physical rather than mathematical arguments. All arguments will be restricted 
to the linear stage o f the instability; for non-linear behaviour arising from the 
parametric instability, I refer to the paper in these Proceedings by Dr. Tsytovich.

2. THE MATHIEU EQUATION MODEL

In this section, we consider Eqs (1 ) and (2 ) with Q (t) given by

Q (t) =  - 2 e  cos c j0 t, co0 =  2rr/T (4)

where e is the modulation amplitude which is assumed to be constant. In this 
case, E q .(l) is reduced to a Mathieu equation whose periodic solutions are given 
by cen (co0 t/2 , eSl20l8 )  (n =  0 , 1, 2 , ...) and sen (co0 t/2 , e£l20/8) (n =  1, 2 , ...), 
cen (x ,q ) and sen (x,q ) being the n*h order Mathieu functions o f modulus q.
The properties o f these functions are well known and can be found in the 
usual textbooks on applied mathematics.

Here, instead o f  using these functions, I shall restrict myself to the weak 
modulation case, I e I <  1, and analyse the solutions by a perturbation method. 

We use the Fourier representation,

/ d w  j.
—  e "  lwt X M

in which E q .(l) is written as

D (gj) X(co) = -  e£ll {Х (а ) - с о о )  +  X (w  +  co0) }  (5)

where

D(co) =  w 2 - Í22 (6)

The left-hand side o f Eq.(5) is the linear contribution, the vanishing o f  D(co) 
giving the linear dispersion relation, while the right-hand side stands for the mode- 
coupling to the responses at frequencies shifted by ±co0 due to the modulation. 
We can write similar equations for X (со + co0), obtaining

D (co±co0) X (co±co0) =  -eS 2o {X (co ) +  X(co ± 2co0) } (7)
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This equation now contains the responses at frequencies со ± 2Í20, in addition 
to that at the original frequency со, and therefore we must proceed to write 
the equations for X (со ± 2co0). I f  we continue this procedure, we obtain a 
hierarchy o f equations which is never closed, because o f the subsequent 
appearance o f  new responses at frequencies shifted by a greater integral multiple 
o f co0 from the original frequency со.

At this point, we recall that we are considering the case | e| <  1 ; then 
Eq.(5) implies that unless со is close to either Í20 or ~^o>  the response X(oo) 
becomes very small (o f  order e). The same consideration can be applied to 
Eq.(7), where the response X(co ± co0) is very small unless (со ± co0) is close to 
either £20 or — £20- The obvious approximation which we can immediately 
think o f is to retain only those responses which have frequencies near ± Í20 

and neglect all others. This approximation leads to our first example, the case 
o f n =  1 in Eq.(3).

2.1. The case o f co0 =  2S20

Let со be close to í i 0 Eq.(5); then со—co0 =  — £20, which yields a large 
response, but со +  co0 =  3 f20> which is off-resonant from the natural frequency. 
We therefore keep only X(co — co0) and neglect X(co +  co0) in Eq.(5). Similarly 
in Eq.(7), we keep X(co) but neglect X (со ± 2co0). In this way we obtain a 
closed set o f equations for X(co) and X(co — co0). A  non-trivial solution can be 
obtained by setting the determinant o f the coefficients equal to zero, i.e.

which gives the dispersion relation.
Now we recall that we are considering the case со =  and со — co0 =  — £20 , 

so we can make the so-called resonance approximation which amounts to the 
approximation:

D(co) =  (со — Í20) (w  + Í2 0) — 2Í20 (w — « o )

D(co — coq) — (со — C0q S20) ( ^  ~  2í 2q (^  (9 )

where we introduced the frequency mismatch defined by

Use o f  the approximation (9 ) reduces Eq.(8 ) to a quadratic form which can 
immediately be solved as

D(co) D(co — co0) =  e2 i^o (8)

A coq 2£20 (10)

( 1 1 )
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In the limit o f small I e I, this equation yields two real solutions, со =  £20 and 
со — gj0 -  Í20 > the former being the natural oscillation and the latter the driven 
oscillation. The modulation yields a coupling o f these two oscillations and 
produces an instability when

, д2e2 >  — ; (12)
n l

For the given mismatch Д, the right-hand side gives the threshold intensity for 
the modulation to cause instability. The threshold becomes zero when A =  0. 
The growing solutions have real frequency given by

Д co0
W r=i2o +  -  = y °  (13)

which is independent o f the original natural frequency, indicating a frequency 
locking. The growth rate above threshold is given by

1 -i О л t n I f !
7 = 2 — Д ] ^  ~ (14)

where the right-hand expression gives the maximum growth rate, 7max=  le Ií20/2 , 
which obtains at exact matching Д =  0.

2.2. The case o f cj0 =  Í20

The foregoing approximation o f neglecting all the off-resonant responses 
is no longer useful for the cases n >  1 in Eq.(3). In these cases, one has to retain 
some non-resonant responses which connect the two resonant responses at 
± S20. Here we consider the case o f  n =  2, i.e. u>0 =  £20 ; then, if  oj =  Í20 in 
Eq.(5), neither o f X (c j ± u>0) becomes resonant. O f these, the mode X(co —co0) 
couples directly to X(a> — 2co0 =  — f i 0) which is another resonant mode, while 
the mode X(u> +  w 0) couples back to the original resonant mode X(co). Although 
both couplings have to be retained for a precise quantitative argument, we shall 
keep here only the one which couples to X(co — 2a>0) and neglect X(co  +  to0).
The latter simply yields a frequency shift which does not contribute to instability.

To make the equations symmetric, we choose gj to be close to zero; then 
X(a>) becomes the one which connects the two resonant responses X (co±co0 —±^о )- 
Then our approximation amounts to neglecting X(co ± 2oj0) in Eq.(7), retaining 
all terms in Eq.(5). The equations are closed among X(co ± oj0) and X(co) and
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we get the dispersion relation in the form 

1 1
1 =

D M
+

D(co +  w 0) D(oj — oj0)
(15)

As before, we make the resonance approximation for D(co ± to0 =  ± Í20). 
Introducing the frequency mismatch 8 by

5 = co0 — £20 (16)

we have

D(co ± u>0) =  ± 2f20 (со ± S) (17)

I f  we further approximate D(co) by D (0) = —S2%, Eq.(15) again becomes quadratic 
in u> and can be solved as

o j2 =  S [e2i20 +  Ô]

This equation has a growing solution when 

—  e2£20 < 5  < 0

(18)

(19)

i.e. when the modulation frequency is slightly less than the natural frequency. 
The threshold modulation intensity for a given frequency mismatch is given by

e2 >  — 5/i20 (20)

which vanishes at 5 =  0. There, however, the growth rate y also vanishes. For 
given e2, the maximum growth rate obtains at 5 =  - e 2 £20/2 with

e2£20
"Углах ( 21)

Note that it is smaller than 7 max for the case o f n =  1 by a factor e. This is 
because we had to invoke a non-resonant response in order to produce the 
coupling in the present case.

An interesting feature o f the present instability is that the non-resonant 
growing mode has zero frequency (o jr =  0). Therefore, this instability is called 
the purely growing mode instability. It also implies that the accompanying 
resonant responses X(co ± co0) have frequency exactly equal to the modulation 
frequency ± w 0, again indicating a frequency locking. Note that the instability
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excites all three modes, X(co) and X(co ± oj0), with the same growth rate, but their 
relative intensities are different:

I X(co) I ~  I 6 11 X(co ± to0) I <  | Х (ш  ± w0) I 

as can be seen from Eq.(5).

2.3. Effect o f damping

So far, we have considered the parametric excitation o f  undamped natural 
oscillations. It is easy to investigate the effect o f damping by introducing a 
phenomenological damping Г in the present problem, i.e. instead o f  E q .(l), 
we use

which in the absence o f modulation yields the two damped natural oscillations, 

X (t) ~  exp [±iJT2o t -  r t ].
Now, Eq.(22) can be reduced to E q .(l) by the transformation

The analyses given above can then be used for X (t). The only modification 
that arises from the damping is to reduce the growth rate from у to (7 —Г). As 
a result, we now get a fin ite threshold for instability independently o f  the 
frequency mismatch, since we need a growth rate 7  for X (t ) to be greater than Г. 
The minimum threshold is obtained by setting the maximum growth rate 7 max 
calculated above equal to the damping Г, i.e. 7 max =  Г, which gives

(22)

X (t) =  X (t ) ert (23)

(24)

(25)

The former obtains at exact matching, i.e. Д =  0, while the latter obtains at 
8 = - e 2a 0l  2 .
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3. COUPLED-MODE PARAM ETRIC EXCITATION

The foregoing example shows that the parametric instability occurs as a 
result o f the coupling o f  natural oscillations at different frequencies. In the 
above example it is assumed that all the excited oscillations have the same 
natural frequency I £20 I. An obvious extension o f this analysis is to consider a 
coupling o f oscillations or wave modes which have different natural frequencies, 
the difference being due either to different wavenumbers or to different branches. 
Cases which have many applications in plasma problems are those in which the 
modulator, which we call tlie pump, produces a coupling o f high-frequency 
waves with a low-frequency wave. We therefore consider such a situation in 
this section.

We first derive a simple dispersion relation which is a generalization o f 
Eq.(15) based on a model set o f equations. Then we consider two special cases, 
that o f a spatially uniform pump and that in which the process describes a 
stimulated scattering o f the pump wave. Some terminologies which are often 
used in the literature to classify various instabilities are briefly summarized. 
Finally, examples in plasma physics problems are described together with 
physical mechanisms causing the parametric coupling.

3.1. Dispersion relation

We consider two branches o f normal modes: the low-frequency mode 
represented by X L (k, со) and the high-frequency mode represented by 
Хн (к, со). In the absence o f a pump, they are assumed to satisfy the dispersion 
relations'.

D l  (к, со) =  со2 -  co2L (k ) = 0 for X L (26)

DH(k, со) =  со2 -  cô j (k ) = 0 for X ^  (27)

where for simplicity we have neglected damping.
The pump, or modulator, which we denote by

Z (rt t) =  2Z 0 cos [ïT0 • r -  co„t], Z0 =  const (28)

produces a coupling o f these two modes. In analogy to the Mathieu equation 
model, we assume the following form o f the coupling:

Dl  (к, со) X L (к, со) = Z 0 {  X+ Хн (к +  k0, со +  co0)

+  A _ X H ( k - k 0,co-coo)} (29)
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DH (к ± k0, со ±co0) XH (k ±  k0, co±co0) =  Z 0M± X L (к, со) (30)

where the coupling coefficients Л+ and ц± are constants.1 Solving Eq.(30) for 
X H and substituting the result in Eq.(29) yields the dispersion relation:

Z 2*■0
Dl  (k, со) DH (k +  k0, со +  со,,) DH (к — k0, со -  co0)

(31)

which resembles Eq.(15).
As before, we shall restrict ourselves to the case o f weak pumping, i.e.

Zp 1. Then Eq.(31) can be satisfied only when one o f the dispersion func
tions, D L;h , becomes nearly equal to zero. This is, however, not sufficient 
to cause instability; instability occurs when at least two o f the zeros o f the 
dispersion functions merge into each other. There are two situations:

(a) DL (k, to) =  0 and DH (к +  k0, со +  co0) =  0 or 

DH (k -  k0, со -  co0) =  0

(b ) Dh (к +  k0, со +  co0) =  0 and DH (к — k0, со — co0) =  0.

From the analogy to the Mathieu equation model, case (a) corresponds to the 
resonant type coupling, i.e. n =  1 case, and case (b ) to the non-resonant type 
coupling, i.e. n =  2 case.

In either case, I со I is assumed to be much less than co0 and hence 
I со ± co0 1 ~  co0 ~  coH . We can then make the resonance approximation (9) 
for Dpj to obtain

—► *■►   —У —У
DH (к ± k0, со ± co0) =  ± 2co0 [со ± oo0 + coH (k ± k0)]

=  ± 2 w 0 [ (w - a )  ± 6 ] (32)

where we introduced two parameters:

а = [с о н (к +  к о ) - ^ н (к - к о ) ]/ 2  (33)

6 =  co0 - [ c o H (k + k 0) +  coH (k - k 0)]/2 (34)

1 Strictly speaking, we should also include in Eq.(30) the terms proportional to
ZoXH(k + k0, со + CÚQ) which we neglect here for simplicity.



FIG.2. Curves showing both sides o f  Eq.(36) fo r  the case in which a  >  0 and the extrema 
o f  the left-hand side are located between 62co0co  ̂ISI and ~ é2 I 6|.

Here 5 is the mismatch o f the pump frequency from the average o f the two 
natural frequencies o f  the high-frequency modes, analogous to the mismatch 
introduced by Eq.(16), and a is their frequency difference which arises from 
the finiteness o f  the pump wavenumber k0. Note that we are choosing co^ to 
be positive. Substitution o f Eqs (26) and (32) into Eq.(31 ) yields a biquadratic 
equation for со.

In many cases o f  interest, particularly when the growth rate assumes a 
maximum value, the coupling coefficients X + and X_ju_ in Eq.(31) become 
real and identical [3]. For simplicity, we therefore restrict ourselves to such 
situations and introduce a dimensionless small parameter e by the relation

Zo X + = Zq X _ =  e2cOqCJl (k ) (35)

The dispersion relation is then reduced to the following simple form:

(со2 -  go l) [ (c o -a ) 2 -  82 ] = - e Jco0coL Ô (36)

Figure 2 shows curves for both sides o f this equation for the case a >  0. It can 
be clearly seen from this figure that there are four complex solutions or two 
growing solutions for the case 5 >  0 and two complex or one growing solution 
for the case S <  0. Setting

со =  cor +  Í7 (37)
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and taking the imaginary part o f Eq.(36), we find that these growing solutions 
arise in the following frequency ranges:

5 <  0 : a > w r > 0  (Mode III)

In § 3.2 and § 3.3, these three types o f growing solution are illustrated by 
consideration o f  special cases.

3,2. Uniform or dipole pump: k0 =  0

In this case, a  vanishes and 5 becomes identical to Eq.(16) with 
coH(k ) = f20 . The dispersion relation (36) becomes quadratic in c j2 and can 
hence be solved immediately.

Let us first consider the case o f  a very weak pump, e2 ^  1. In this case 
we have two types o f solution similar to those obtained in § 2 :

(a) Resonant type for 5 =  Ci>L(k) >  Ó with the growth rate

where Д (=  5 — u L(k )) is the mismatch and 7 max is the maximum growth rate 
given by

which can be compared with Eq.(14). The excited modes have frequencies 
close to сон(Ю and o jL (k), having the sum frequency exactly equal to the 
pump frequency сo0. This type o f instability is called the resonant decay 
instability. Note that in this special case o f k0 =  0, modes I and II are degenerate, 
i.e. w r =  ± o>l (k).

(b ) Non-resonant type for the case 6 <  0 (mode III) with the .same growth 
characteristics as those derived in § 2 .2 , provided that the growth rate is 
much smaller than c jl . This non-resonant type instability is called the 
oscillating two-stream instability (OTSI).

In both cases, one can derive the minimum threshold for instability i f  one 
introduces phenomenological damping rates, T L and r H . by the relations:

(Mode I)

0 > cj’r (Mode II) (38)

(39)

7 m ax = le l (w 0GJL ) 1/2/2 (40)

Dh ,L (k, üj) -  [w WH,L +  ÍFHjL ] + ШН,Ь +  i r H,L ] (41)
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The results can be written as

Т ш а х Х Г н Г ь ) " 2 (resonant type) (42)

(non-resonant type) (43)

which are to be compared with Eqs (24) and (25).
A  new type o f solution arises when the pump intensity becomes sufficiently 

large to satisfy the inequality:

In this case, the growth rate becomes greater than coL and therefore the growth 
characteristics substantially deviate from those obtained in §2. Maximization 
o f the growth rate with respect to Ô then yields

We note the one cube root dependence o f the maximum growth rate on the 
pumping power e2 in both cases. These modes are sometimes called the 
quasi-reactive modes. For further details o f the solutions see Ref. [4].

In concluding this subsection, we mention that in the case o f a uniform 
pump the dispersion relation can be derived correct to all orders in e. This is 
because all particles o f the same species oscillate in unison in the presence o f 
a uniform pump field and hence the pump field can be eliminated from the 
Klimontovich equation by using the oscillating frame o f reference. We can then 
use the usual linear theory analysis for the fluctuations in the absence o f the 
pump field, with one difference, that the reference frame now depends on the 
particle species. By introducing an appropriate transformation operator, one 
can easily manipulate it to derive the dispersion relation correct to all orders 
in e (see e.g. [5]).

3.3. Stimulated scattering

(44)

1/3

for S >  0

to = i (45)

for 5 <  0

We next consider the situation where the pump wave satisfies the same ■ 
dispersion relation as the excited high-frequency wave, i.e.
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This corresponds to the situation where the pump wave is coherently scattered 
by the low-frequency wave. In this case, the mismatch (34) becomes

ó = w H (k0) -  [w H (kj, +  k”) +  w H (îT0 - k ) ]/ 2  (47)

where we used the relation (ïT) = coH (— k \  since we are choosing а>н to be 
positive. In the particular case where the linear group dispersion o f the high- 
frequency wave, i.e. d2 coH/dk2, calculated along the line connecting the three 
wavenumber vectors k0 and k0 ± к has a fixed sign, the mismatch 5 also has 
a fixed sign:

5 > 0  if < 0
á k ¿

5 < 0  i f  >  0

(48)

dk2

Combining this relation with relation (38), we then find that in this case we 
can have only modes I and II or mode III, depending on the linear dispersion 
characteristics o f the high-frequency mode. This situation is quite similar to the 
modulational instability which can be obtained from the non-linear Schrödinger 
equation (see e.g. [6 ]), and therefore one can give a simple physical interpretation 
for the mechanism o f the instability.

For clarity, let us consider the case d2 coH/dk2 >  0. In this case only 
mode III, which has a real frequency in the region a 5= o)r >  0,can be excited. 
Now from the definition (33), а/к denotes the propagation speed o f the beat 
mode (low-frequency mode) as calculated from the linear dispersion relation 
o f the high-frequency wave. Therefore (w r -  a )/к denotes the non-linear shift 
in the beat propagation speed. For mode III, this non-linear shift is negative, 
so that the beat tends to move faster in the low-amplitude region than in the 
high-amplitude region (Fig.3(a)). As a result,the beat tends to be antisteepened 
(Fig.3(b)). Now for d2coH/dk2 >  0 ,the group velocity, dcoH/dk =  vgH, is larger 
in the steep region (i.e. behind the crest o f  the beat) than in the smooth region 
(i.e. in front o f  the crest). This results in the amplification o f the beat as shown 
in Fig.3(c). It is obvious that mode III is stable i f  d2 ajH/dk2 <  0. Instability 
o f modes I and II for the case d2coH/dk2 <  0 can be explained in a similar 
fashion.

In all cases, the growth rate becomes largest and the minimum threshold 
resulting from damping becomes lowest when the resonance condition

шн (ко) -  (k0 ~ к ) +  w L (k ) (49)
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F IG .3 . Phys ica l m echanism  o f  ins tab ility  f o r  the case a  >  cor >  0 and  d 2w H /d k2 >  0: 

(a j in itia l m od u la tio n ; (b )  an tisteepen ing due to  the beat m o t io n ; and ( c j  a m p lified  

m od u la tion  due to  the g ro u p  d ispersion e ffe c t.

is satisfied. This is in general called the resonant decay instability. In an 
isotropic plasma this condition is satisfied when I k0 I =  k0 with the maxi
mum growth rate under the backscattering condition

ko — к -  k0, к =  2k0 (50)

Figure 4 shows an example o f  the real frequency o f the excited low- 
frequency oscillation as a function o f a for a relatively weak pump case. The 
term modified decay instability is used for the non-resonant region o f mode III 
instability. When a vanishes due to a particular vectorial relation o f  k0 and k, 
a purely growing mode can be excited for the case 6 <  0 , which corresponds 
to the filamentation instability. Finally, the term modulational instability is 
used for the case where k0 >  k, although in some literature it is used for a 
wider class o f  instabilities including the oscillating two-stream instability and 
the modified decay instability.

3.4. Examples in plasma physics problems

The most extensive studies o f  parametric instabilities in plasmas have 
been made in connection with laser plasma interactions (see e.g. [7 ]). Here we
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FIG.4. Classification o f  various parametric instabilities. 
RD: resonant decay instability
QM: quasi-mode instability
MOD: modulational instability 
MD: modified decay instability
OTSI: oscillating two-stream instability 
FI: filamentation instability

consider a situation where an intense laser light is incident on a solid target and 
creates a high-density plasma (n ~  1021/cm3 for a Nd glass laser and n ~  1019/cm3 

for a C 0 2 laser) which in turn strongly interacts with the laser light. The plasma 
is unmagnetized and the typical scale length o f the plasma is much greater than 
the Debye length, so that, to lowest order, we can treat the plasma as isotropic 
and uniform.

Naturally, the incident laser light can act as a pump for various parametric 
instabilities, o f  which the following are typical examples:

(a) Stimulated Raman scattering, which is a scattering o f the laser light 
by a Langmuir wave and is important when w 0 is close to 2w pe, where cope is 
the electron plasma frequency which is proportional to the square root o f the 
plasma density.

(b ) Stimulated Brillouin scattering, which is a scattering o f laser light 
by an ion-acoustic wave and is important in causing a backscattering o f  the 
incident light.

(c ) Two-plasmon decay, which is a decay o f the laser light at frequency 
near co0 — 2cope into two Langmuir waves and is important for both laser light 
absorption and re-emission at frequencies co0/2 and 3co0/2.
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(d ) Resonant decay into a couple o f Langmuir and ion-acoustic waves, 
which occurs near co0 =  c jpe.

(e) Oscillating two-stream instability, which also occurs near cj0 =  cope.

In addition to these, an important parametric instability takes place owing 
to a linear-mode conversion o f the electromagnetic wave into a Langmuir wave 
near the critical density, i.e. near gj0 =  tope. That is, an electromagnetic wave 
propagating obliquely to the plasma density gradient can excite an electro
static oscillation which peaks at the resonance frequency cj0 =  <^pe- This 
oscillation in turn acts as a pump for a modified decay instability at the critical 
density region, and the excited high-frequency wave can in turn be linearly 
transformed to an electromagnetic wave. This instability is called the radiating 
decay instability and is found to have an extremely low threshold [8 ].

When the pump intensity is increased, there can be various types o f non
resonant instabilities. In addition to the reactive quasi-mode discussed above, 
there exist resistive quasi-mode instabilities in which one o f the excited modes 
is highly damped due to wave-particle interactions. In the case o f stimulated 
scattering, this corresponds to the non-linear Landau damping o f  the pump 
wave. When the pump wave is electromagnetic, it is often called stimulated 
Compton scattering. A  situation also exists where a stimulated mode 
conversion is produced due to excitation o f a highly damped mode. The 
kinetic instability discussed by Silin [9] is the case where an electromagnetic 
wave is converted into a short-wavelength ion plasma wave via scattering o ij  

electrons. The transitional instability which is considered to limit the Langmuir 
wave collapse [10] is the case where a long-wavelength Langmuir wave (condensed 
plasmon) is con verted.in to a short-wavelength ion oscillation via electrons.

Parametric instabilities are also important in r.f. heating o f a magnetized 
plasma, such as lower hybrid heating, ion-cyclotron heating and so on, and 
we refer to Refs [11,12] for these applications.

We conclude this section by describing some o f the physical mechanisms 
that cause the parametric coupling o f waves. In most cases, the driving force 
o f the low-frequency wave by the high-frequency waves, which include both 
pump and excited high-frequency waves, is the ponderomotive force. In the 
fluid approximation, it can be written as
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where ms is^the mass, v Hs is the high-frequency component o f the fluid velocity; 
Í2 Hs (= qsBH/msc) is the high-frequency component o f the cyclotron frequency 
vector (q s being the charge); the suffix s denotes the particle species,and the 
angular bracket denotes the time average. The component o f this ponderomotive 
force parallel to the static magnetic field causes a modification o f the average 
plasma density 5n0, whereas the component perpendicular to the static magnetic 
field causes a drift current which in turn modifies the average magnetic field 
and the average flow velocity, yielding 6B0 and 6v0. These perturbations for the 
averaged quantities correspond to the low-frequency mode and modify the 
dispersion relation for the high-frequency wave. In this way, a coupling is pro
duced between the high- and low-frequency waves. In some cases we also need 
other non-linear effects; these include the kinetic pressure effect, the second 

harmonic generation effect, non-linearity between density and potential, etc.

4. GEOMETRICAL EFFECTS ON RESONANT DECAY IN STAB IL ITY

As pointed out in §3, the resonant decay instability has the lowest threshold 
and the maximum growth rate for a relatively weak pump. In this section, we 
restrict ourselves to the resonant decay instability and discuss some geometrical 
effects, namely the effects o f spatial non-uniformity o f the medium and finite 
spatial extent o f the pump. We present these effects based on ‘physical’ 
arguments which ought to be unrigorous. However, all the results presented 
here can be derived by a more rigorous mathematical treatment which you can 
find in Ref. [13].

4.1. Interaction region

The most important geometrical effect is the appearance o f  a finite spatial 
extent o f the interaction region. This can be seen most easily for the case where 
the pump has a finite spatial extent. Without a pump there is no parametric 
coupling o f waves, so the parametric interaction is limited to a certain spatial 
region where the pump exists with a sufficient amplitude (greater than the 
threshold value).

Now, even if the pump has an infinite spatial extent with constant amplitude, 
the region for a given resonant decay instability can be limited i f  the plasma itself 
is spatially non-uniform. To show this, we first note that for resonant decay 
instability the following matching condition is required:
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I f  we denote the real part o f the frequency o f the excited low-frequency wave 
by ojt , we can alternatively write this condition as

—У —У —^
ко (w 0) =  kL (w r) +  kH(c j0 -  cor) (53)

—У
where к д щ (с о ) stand for the solutions o f the linear dispersion relations for 
the pump wave (suffix 0), the low-frequency wave (suffix L ) and the excited 
high-frequency wave (suffix H) when their frequencies are given. In a weakly 
inhomogeneous plasma, the wavenumbers k0 L H vary as the waves propagate, 
and their variation can be described by the WKB approximation. Suppose at a 
certain point, say at r = 0 , the wavenumber matching condition is exactly—У —> —► —У —V
satisfied, i.e. k0= kL +  kH at r = 0. Then at г Ф 0, a mismatch

/?(0 = £ H(w0-GJr,O  + ïrL(wr,r5-ï?0(co0,O (54)

is produced. When this mismatch exceeds a certain critical value, the parametric 
instability ceases. Therefore, a finite spatial extent for the interaction region is 
produced.

As shown by Eqs (14) and (39), the maximum allowable frequency mis
match for a given pump amplitude is given by A i,„ „  =  4 7 2 v . For the case o f

lIldA III dX

a one-dimensional propagation o f waves, the relation between the frequency 
mismatch Д and the wavenumber mismatch к is given by

vgH vgL 1 (55)

where vgĵ  and vgL are the group velocity o f the high- and low-frequency waves. 
Therefore, the interaction region is determined by the condition

4-7max
к (x ) <  ¡---------- r (56)

IvgH vgL

4.2. Absolute and convective instabilities

When the interaction region is limited in space, the effect o f instability 
becomes entirely different depending on whether it is an absolute instability 
or a convective instability. A  convective instability is one in which the wave 
amplitude increases as the wave packet propagates through the medium. In this 
case, amplification o f the wave packet is observed only when we move with the 
group velocity o f the wave, In other words, amplification ceases when the wave 
packet moves outside the interaction region. Therefore, as far as the spatial
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FIG.5. Physical mechanism o f  absolute instability in uniform plasma. Initial high-frequency 
pulse excited at x = 0 amplifies as it propagates with group velocity vgH, then produces a 
low-frequency pulse at x — i b y  beating with the pump; the excited low-frequency pulse 
propagates back to x = 0 while being amplified and produces the high-frequency pump which 
has greater amplitude than the initial pulse.

extent o f the interaction region is sufficiently small, no substantial amplification 
can be produced. On the other hand, for the case o f an absolute instability, the 
wave amplitude increases exponentially at the point where the wave packet 
was initiated. This instability is therefore little affected by the finite size o f 
the interaction region and hence causes a strong non-linear effect in a local 
region.

Obviously when the excited high- and low-frequency waves move in the 
same direction, i.e. vgHvgL >  0, the instability is always convective. A ll the 
wave packets initiated at a local point move away in the same direction. On the 
other hand, i f  vgHvgL <  0, there can be an absolute instability. We show this 
by considering the case o f  uniform pump and uniform plasma. Let there be an 
initial pulse o f high-frequency wave at x =  0. It amplifies as it moves with group 
velocity vgH (see Fig.5). At the same time, it beats with the pump and creates 
the low-frequency wave which in turn propagates back to the opposite direction 
with group velocity vgL. It is also amplified and produces the high-frequency 
wave by heating with the pump. I f  the high-frequency wave excited by beating 
at the original point x =  0 has greater amplitude than the initial pulse,this process 
results in an absolute instability. We can see from this argument that the absolute 
instability in this case results from a feedback loop o f the wave energy. In the 
non-damping case, this feedback process always causes an absolute instability 
in a uniform medium.

When damping exists in the natural oscillations, the energy dissipation 
during the excursion o f the wave packets must be taken into account. Then a 
finite threshold is needed for absolute instability. It is easy to show that the 
spatial amplification rate o f the wave packet in the non-damping propagation is 
given by
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where 7  is the temporal growth rate calculated in the preceding sections. Suppose 
the wave packet initiated at x =  0 made an excursion o f length £ and came back 
to the original position x =  0 through the feedback path shown in Fig.5. Then 
in the non-damping case it amplifies with the factor exp [2q £]. On the other 
hand, the packets are damped during their excursion at the rate Г ц /1 vgH I on the 
way from x =  0 to x =  £ and at the rate T L /1 vgL I on the way back from x =  £ 
to x =  0. Therefore, after the entire excursion the net amplification is obtained 
when

Using Eq.(57), we then find the minimum threshold for the absolute instability 
as

Note that the right-hand side is greater than (or equal to) the minimum threshold 
value, i / r Hr L) for the convective instability (see (42)). Therefore, in the 
presence o f damping in a uniform medium, the resonant decay instability with 
VgHvgL <  0 is convective when the pump amplitude is relatively weak, and 
becomes absolute when it exceeds the threshold determined by (59).

4.3. Effects o f spatial non-uniformity

We now discuss how this feedback process is affected by the spatial non
uniformity o f the medium. Suppose at x =  0 the exact matching condition is 
satisfied, i.e. kH (x  = 0) = ko (x  = 0 ) - k L (x  = 0). When the high-frequency wave 
packet propagates up to the point x =  £ and produces a beat low-frequency mode, 
it acquires the wavenumber k0 (x  = £) — кц (х = £). In coming back to the point 
x — 0 , this low-frequency mode will receive a wavenumber shift kj^(0 ) — к ^£ ). 
Therefore, when this low-frequency wave beats with the pump at x =  0, the 
high-frequency wave produced will have the wavenumber given by

where к is the mismatch at.x =  £ defined by Eq.(54). This means that the 
spatial non-uniformity produces a mismatch k(£) during the excursion. I f  this 
mismatch exceeds the right-hand side o f (56), the feedback is completely 
destroyed. In other words, we have a feedback length, £FB, determined by

T'max (59)

ko (0 ) -  [k0(£) -  kH(£) +  kL (0 ) -  kL (£)] =  kH(0 ) +  k(£) (60)



PARAMETRIC EXCITATION 193

the inequality

k 2(^f b ) <-
gH vgL

(61)

The feedback for the mode excited at the exact matching point is maintained 
only within the region I x I <  £pB •

f )ñ A  f\ П
I I
i Interaction Region I 
1 i , I
f---lFB— **—  FB — H

FIG. 6. Schematic picture showing the suppression o f  the feedback loop in an inhomogeneous 
medium.

Now for the case where the interaction region is determined by the spatial 
non-uniformity alone, i.e. by the inequality (56), the feedback length is just 
one-half the width o f the interaction region. As can be seen from Fig.6 , this 
means that the main part o f the wave energy does not contribute to the feed
back and, therefore, the feedback process is almost completely destroyed. 
Indeed, for the case where [d«/dx ]x=0 Ф 0, we can rigorously show that there 
is no absolute instability,whatever the sign o f vgHvgL [14]. The instability in 
this case becomes convective.

For the case o f convective instability, we can estimate the maximum ampli
fication factor by neglecting damping and the non-linear effect as follows:

X H  (« in t / 2 )

XH (x = 0 )
=  exp

2int/2

dx q (x )

МП/
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where is the width o f  the interaction region and in the last line we approxi

mated k ( x ) by k 'x , in which case the interaction width is given by the relation

(ßint/2)2 = 4 TLx/ '< '2 lv gHVgLl (63)

The maximum amplification factor (62) was first derived by Rosenbluth [14].
The above result can alternatively be looked upon as giving a threshold 

for instability in the presence o f ‘damping’ due to convection loss o f  wave 
energy, i.e. Eq.(62) indicates that for a sufficient amplification we need a pump 
power which satisfies the inequality

'Ymax ^  I K vgHvgL  ̂ (64)

If  we denote I к 1 =  L ~2 , Eq.(64) can be written as

7 2 >'max
vgH vgL

L L
(65)

Comparing this inequality with (42), we can interpret I vg/L I as an effective 
damping rate due to the convection loss o f the wave energy. Note that lL/vg I 
is the time needed for the wave energy convecting across the distance L.

Although there is no absolute instability for the case where the pump has 
an infinite spatial extent and к' Ф  0 , one can have an absolute instability either 
when the pump has a finite spatial extent or when к =  0. First, if the pump 
duration length L p is less than the feedback length 2pB, then the feedback is 
maintained in the entire interaction region the extent o f which is determined 
by Lp. Consequently, the absolute instability in a uniform system is recovered. 
In addition to the condition that L p <  £FB, we need an additional condition 
for a sufficient growth, i.e.

L„

/ dx q (x ) >  1

which yields

1 vgH vgL
1/2

T'max t (66)
LP

For the case when к' =  0, we can also have an absolute instability even i f  the 
pump has an infinite extent. In this case, we can write the mismatch as
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к (x ) =  к" х2/2, which is symmetric around the exact matching point. Because 
o f this symmetry, the wave initiated at x = —2 can couple strongly to the wave 
initiated at x = £ and this strong coupling enhances the feedback effect, resulting 
in an absolute instability. In this case, the interaction region is given by

(ßjnt/2)4 = 1б7тах/к"2 I vgHvgL 1

and the condition for sufficient amplification,

« in t/2

J 'd x  q (x ) >  1 

0

yields

Tmax >  4' 1/3 I * "1" 3 л/l vgHvgL ! (67)

In general, when an absolute instability takes place, a strong non-linear 
effect occurs such as the formation o f a strong density gradient. Such a profile 
modification in turn strongly affects the subsequent parametric processes.
These strongly non-linear problems have recently been investigated by several 
computer simulations, while analytical investigations are still at a primitive 
stage.
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Abstract

HYBRID SIMULATIONS OF QUASINEUTRAL PHENOMENA IN MAGNETIZED PLASMA.
A new class of numerical algorithms is presented for computer simulation of low- 

frequency electromagnetic and elctrostatic phenomena in magnetized plasma. Maxwell’s 
equations are solved in the limits of quasineutrality and negligible transverse displacement 
current (Darwin’s model). Electrons are modelled as a fluid with polarization effects ignored.
Ions are described as particles.

We present a new class of numerical algorithms for computer simulation of 

low-frequency (ш «  шсе> Шре) electromagnetic and electrostatic phenomena in 

magnetized plasma. Maxwell's equations are solved in the limits of quasineu

trality and negligible transverse displacement current (Darwin's model):

=0, V x j5 = 4ттс"Ъ, and -8B/8t = cV * E. Electrons are modeled as a fluid 

with polarization effects ignored: 0 «• -nge£ + x Be"'* - meve-jie"̂  " v’Êe»

ne - П Ions are described as particles. A novel feature of these algorithms 

is the use of the electron fluid equation of motion to determine the electric 

field, which renders these numerical schemes remarkably simple and direct. The 

simulation plasma is either periodic, or bounded by particle reflecting conducting 

walls. Both fully nonlinear codes with spatial grids and linearized gridless 

codes have been implemented. We have implemented several variations of the 

basic algorithm which utilize the conservation of canonical momentum or which 

relax this constraint for more general situations. The numerical dispersion

* Work performed under the auspices of USERDA under contract No. W-7405-Eng-48.
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and stability of the various algorithms are investigated analytically and 

verified by computer experiments. Stability generally requires that 

^ A ^ e f f ût ~  ̂ anc* “ciAt S  ̂’ w^ere ttle effective Alfvén frequency (кУд)̂  

includes space-time grid effects. The goal is to simulate low-frequency

Special emphasis is given to mirror physics applications, e.g. low-frequency 

microinstabilities and build-up to and stability of field-reversed configurations. 

Maxwell's equations are solved in the Darwin approximation (no transverse 

displacement current) with quasi neutral it.y additionally imposed. The plasma is 

a nonrelativistic ensemble of particle ions and an electron fluid.

Quasi neutrality:

(ш ~ шС1- «  Up.j) electrostatic and magnetostatic plasma collective behavior.

It e(ni - ne> + V”(¿i + = 0

Boundary conditions: (J. +
surface

= 0

(¿i + Je)8, = 0

Therefore, quasineutrality + Darwin approximation 

law to

тг £ -»■ 0 reduces Ampère's

V x в = — (J. + J )*" = — (J. + J )
-  с - i  - e  с - i  - e

To this add

V x E = - (Faraday's law)

and

We neglect the electron inertia, use ne = n^, 

and solve the electron fluid equation for E.
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FIG.2. Unstable drift-cyclotron-loss-cone mode.

F(v) = exp(-v2) -  exp(- Rv2);

R = 10; k xPi =  7; /3=0.1; Pi/Rp =  0.1.

Result shows initial high-frequency transient and then transitions to an instability with 
co/coci = 0.65 and 7/coc¡=0.45.

Note that the vector potential is propagated ahead in time and that the electric
ExB

field appears as part of the electron current, = n —к- , and is obtained by

2
solving for 0^ = -V  A - i | .  It is possible to construct algorithms that are 

perfectly time-centered and that require no iteration. In one dimension the
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IJ 12 versus time

“ ci*
2 ff

FIG.3. Stable drift-cyclotron-loss-cone mode. 

kxPi = 1 ; other parameters same as in Fig. 2.
No growth is observed; the primary frequency is close to w/coc¡ = kVA/coc¡ = 3.

algorithm is particularly straightforward. There is a longitudinal electric 

field Ex, a transverse electric field E , a vector potential A , and a magnetic
у у

field Bz> It is the geometric decoupling of transverse and longitudinal vector 

fields that makes one-dimensional versions of Darwin models especially simple. 

Another simplification possible in one dimension is the use of conservation of 

у momentum.



To verify that our algorithm is accurate and stable we have analysed the 

linear behavior of the one-dimensional finite difference algorithm. We compare 

in Fig. 1 the analysis and measurements from the code for compressional Alfvén 

waves.

The extension to higher dimensions is not straightforward. Difficulties 

arise in trying to time-center all of the equations without introducing spurious 

effects at a frequency related to the sampling rate. We also wish to relax 

the constraint that canonical momentum be conserved in any direction. A general 

predictor-corrector scheme has been developed. The use of the predictor alone 

has the usual difficulties associated with leapfrog schemes. The corrector 

damps out the spurious high-frequency modes but also can severely damp desired 

low-frequency modes unless the time step is sufficiently small. For example, 

with mit = k\^At = 0.125 we observe a reduction in wave amplitude by 7% in 

a time ioc^t = 50. This may or may not be acceptable depending on the applica

tion. The point is that the algorithm is stable without extra spurious branches 

and with some care will not seriously alter the significant physics.

We have successfully simulated with linearized codes three examples of

microinstability: two essentially electrostatic modes, the Dory-Guest-Harris

1 2  3 4
instability ’ ’ and the drift-cyclotron-loss-cone mode ; and the Alfvén-ion-

5
cyclotron mode which is electromagnetic. The simulation results agree well 

with linear analytical theory, and the generally stabilizing influence of the 

electromagnetic modifications of the dominantly electrostatic modes is 

demonstrated. We have also applied these simulation models to the study of 

field-reversed magnetic-mirror systems. Our simulations verify that electron 

return currents cancel an embedded, linearly rising,external current which is 

perpendicular to the vacuum magnetic field, only for times up to the Alfvén 

transit time of a plasma bounded by conducting walls After this, there is a 

growth of net current and concomitant magnetic field modification.

Examples of results from a linearized version of the code for a drift- 

cvclotron-loss-cone mode are shown in Figs 2, 3. For the case kxp.. = 7, we 

see an instability with both growth rate and frequency agreeing with the theory.
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For kxp.j = 1, the mode is observed to be stable, again in agreement with the 

theory.

Similar agreement is obtained for the Dory-Guest-Harris instability 

the Alfvén ion cyclotron mode.

These algorithms are presently being extended to 2D nonlinear versions 

for inhomogeneous plasmas. They are expected to be important for a variety of 

mirror-confined plasma problems.
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Abstract

APPLICATIONS OF COMPUTATIONAL PLASMA PHYSICS IN PARTICLE BEAM FUSION.
Inertial confinement fusion has relied heavily on advanced computer simulation techniques 

since its inception. The early computations at Lawrence Livermore Laboratory of laser-fusion 
target implosion and burn provided the vital spark for the rapid growth of this field. The more 
recent programmes in which electron and ion beams are being studied as alternatives to lasers 
have also been supported by large-scale plasma simulation activities. These activities range from 
particle-in-cell models for diode focusing studies, through combined Monte Carlo deposition 
and hydrodynamics calculations, to one- and two-dimensional target design computations 
using advanced multitemperature combined hydrodynamics and energy flow codes. These 
computational plasma physics applications are described.

1. INTRODUCTION: PARTICLE BEAM FUSION

Before describing computational methods and results, it is useful first to 
review briefly what inertial confinement and particle beam fusion [1 -7 ] is about. 
Inertial confinement fusion requires that a high-power source o f energy be focused 
on a small target. Possible sources include laser, electron and ion beams. The 
target contains D-T fuel which must be compressed and heated rapidly to ignition. 
The inertia o f the imploding target must then confine the reacting D-T for a time 
long enough to consume a large fraction o f the fuel.

• Electron and ion beams are being studied as alternatives to lasers because o f 
their higher efficiency and different deposition characteristics. The beams are 
produced by pulsed accelerators usually consisting o f a Marx generator, a pulse- 
forming line and a vacuum diode. Electrical energy is transferred from the Marx 
generator to the pulse-forming line where a short-duration high-power pulse is 
formed and then applied to the diode. The pulse produces extremely high 
electric fields in the diode, so that a beam o f electrons is emitted from the cathode. 
I f  a plasma source is present at the opposite electrode (the anode), a beam o f ions 
will flow in the direction opposite to the electrons. Figure 1 shows the 8-TW 
PROTO-II accelerator [8 ] recently put into operation at Sandia. Its design para
meters are a voltage o f 1.5 MV, a current o f  6 MA and a pulse length o f 24 ns.

* Work supported by USERDA.
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FIG.2. Versions o f  magnetically insulated diodes in which electron insulation is achieved by 
(A) externally applied magnetic fields and (Bj beam self-fields.

FIG.3. Schematic diagram o f  a simple gas-filled electron-beam fusion target.

To use electron beams for compressing targets, it is next necessary to focus 
the electrons to a small area at the anode. At high current levels, the self- 
magnetic field o f the beam provides the necessary focusing forces. The ion flow 
in the diode can contribute to the focusing by increasing the magnetic field and 
by partially neutralizing the self-electrostatic fields and forces o f  the electrons. 
Current densities from 1 to 10 MA - cm' 2 have been achieved experimentally by 
this process.
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FIG.4. Diode code flow  chart.

Z

FIG.5. 3-MVhollow cathode diode configuration; the dashed line is a sample electron 
trajectory and the solid line is a sample ion trajectory. The diode is cylindrically symmetric 
about the z-axis.

It was suggested several years ago [9] that the ion flow itself in the diode be 
focused and used to implode targets. Target design calculations indicated that the 
more favourable ion deposition profile could lead to reduced peak power require
ments and greatly relaxed machine impedance values. To use the ions efficiently, 
it is first necessary to suppress or reduce the electron flow by using magnetic 
insulation or using a design in which the electrons reflex back and forth through a 
thin anode. In addition, certain voltage and electrode configuration choices for 
self-pinched electron beam diodes provide a self-magnetic insulation and an 
enhanced ion flow, as shown in Fig.2. Proton currents o f about 200 kA at 
1.5 MeV have been reported by the Naval Research Laboratory. The ultimate 
choice between electrons and ions will be determined by such questions as effi
ciency, focusability and target design.
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F IG . 7. Io n  s im u la tion  p a rtic le  m ap; 1 -M V a n d  2 -M V  equ ip o ten tia ls  are indicated.
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F IG .8. Code solution for a 10 -M V  hemispherical diode. The ions flow  radially inward from  

anode to cathode; they are assumed to be charge neutralized inside the cathode.

The simplest target designs [10] for particle beam fusion, shown in Fig.3, consist 
o f high-Z spheres (such as Au) which contain gaseous D-T fuel. The charged 
particles deposit their energy in the outer portion o f the sphere, raising its 
temperature and pressure. This increase in pressure leads to the ablatiorl o f the 
outer portion; momentum conservation then causes the dense inner portion o f 
the target to be imploded inwards. The magnetic and electric fields present in and 
near the target can contribute to the efficiency o f the energy deposition. Calcu
lations thus far have indicated that breakeven for electron beam targets requires 
somewhat more than 1014 W o f power deposited. Ion beam targets [9] have 
requirements reduced by a factor o f 5 to 10. Symmetry requirements and the 
stability o f these targets are topics o f present study.

Computational plasma physics has played a major role in the development o f 
inertial confinement fusion concepts and in the analysis o f  present-day experiments. 
These applications, which can be broadly categorized as diode physics and target 
physics, are described in the next two sections.
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280 ns 400 ns

F IG .9. Hydrocode calculation o f  target implosion at several times showing the cross-sectional 
view o f  target density.

2. DIODE PHYSICS

Simulation o f the electron and ion flow in diodes has been performed using 
two-dimensional particle-in-cell (PIC ) type models [11 — 14]. The components o f a 
diode code include a fast, accurate particle-pusher for both electrons and ions, a 
fast Poisson solver which can treat cylindrically symmetric regions with irregularly 
shaped electrodes, and an emission-law model. The charge and current densities 
typically present in high-power diodes require that the effects o f self-magnetostatic 
and self-electrostatic fields be included, although displacement currents and 
inductive fields are neglected.
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FIG . 10. Experimental configuration to measure jet velocity and arrival time; the oscillogram 

records laser light reflected from  both the membrane and the beam splitter.

Most diode code applications have studied quasisteady flow equilibria. The 
method is shown in Fig.4. A  particular voltage is applied and particles are first 
emitted from assumed electrode plasmas based on locally one-dimensional 
Child’s-law models. Next, the relativistic equations o f motion for the particles are 
integrated for a small increment in time. The new particle positions and velocities 
are then interpolated to a finite difference mesh to determine new charge and 
current densities. The field solvers are finally used to obtain fields and forces 
for the next time step. Particles striking electrode surfaces are removed from the 
calculation, and new particles are emitted to continue the integration. The anode 
current and current density are monitored during the calculation. The final 
solution converges to an equilibrium in which fluctuations remain, but the macro
scopic quantities are nearly constant.

Figure 5 shows the configuration for a diode studied recently by Quintenz 
and Poukey [13]. For the particular dimensions shown, the code predicts an 
electron current o f 0.65 MA, and an ion current o f 1.6 MA. Figure 6 shows the 
positions o f the 104 simulation electrons at equilibrium, while Figure 7 shows a 
similar plot for the ions. The ion gyroradius is so large that little bending o f the 
trajectories is observed.
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F IG . l l .  Computed radius versus time for various regions o f  a breakeven electron beam target.

The most recent versions o f the codes include more complete physical 
models. Shank and corner emission models are included, and time-dependent 
effects are now being studied. The emission laws used are corrected for magnetic 
fields and returning particles. The pinch formation phäse requires the use o f a 
time-dependent emission model [14, 15] in which ions are emitted only in a 
local annular region o f the anode where the electrons are striking. This model is 
based on the assumption that ions can only be emitted from an anode plasma and 
that no plasma exists until the anode experiences an electron flux.

The Poisson solver used in the code is based on a fast Fourier transform in 
the axial direction, followed by the usual fast one-dimensional tridiagonal 
method [16] in the radial direction. Capacity matrix methods [17] are used to 
allow irregularly shaped regions. The original two-step predictor-corrector 
particle pusher [11] has been replaced by a fourth-order Runge-Kutta method [13] 
to increase accuracy. The use o f a high-accuracy method permits a larger time 
step to be taken with a significant reduction in run time.

Many variations o f this PIC-type code have been constructed. A  spherical 
version was written to study the behaviour o f a spherical ion diode [18, 19].
This diode, shown in Fig.8 , uses the self-pinched electron flow to enhance the 
ion current and a spherical geometry for ion focusing. Another version was 
written in a coaxial co-ordinate system to study laser-exciter diodes [20]. Similar 
methods have been used to study collective ion acceleration concepts, both in 
linear [21, 22] and electron ring accelerators [23]. The basic techniques which 
have been developed are sufficiently modularized to permit codes to be constructed 
which provide a quick analysis o f many proposed experiments in particle acceleration.
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T i m e  = 4 . 0  ns T i m e  = 5 . 0  ns

Time = 6.0 ns Time = 7.0 ns

FIG.12. Sequence o f  frames (t  =  4 -7  ns) showing iron pusher (upper portion o f  frame) 
compressing deuterium fuel (lower portion o f  frame). Times are measured with respect to the 

time o f  initial pusher deceleration. Each frame is cylindrically symmetric about a vertical axis 

through the middle o f  the frame.

3. TARG ET PHYSICS

Both target design calculations and the analysis o f target response experiments 
rely on the use o f  one- and two-dimensional hydrodynamics codes. These codes 
are based on collision-dominated continuum models. At high beam powers the 
targets exhibit basically compressible fluid-like motion, while at low powers 
elastic solid properties can be important. The partial differential equations 
describing the conservation properties o f the system are integrated using finite 
difference methods. One-dimensional computations usually employ Lagrangian
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T i m e  = 8 . 0  ns T i m e  = 9 . 0  ns

F IG .13. Continuation o f  sequence shown in Fig.12 fo r  t =  8 -1 1  ns.

meshes which follow the fluid motion. This enables the zones to follow and 
resolve the compressed regions, which are usually the regions o f interest. For 
two-dimensional problems, Eulerian calculations which use a fixed mesh are often 
employed. These methods are helpful in problems where non-laminar fluid flow 
would distort a Lagrangian mesh.

An example o f the simulation o f a 2-D target response experiment [24] is 
shown in Fig.9. A  4-mm-diameter gold hemisphere mounted in a copper anode 
plate is driven by a 0.75-MeV electron beam. The momentum imbalance causes 
a dense gold jet to form and penetrate the central region. Figure 10 shows an
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T i m e  = 2 . 5  ns T i m e  -  5 . 0  ns

Tim e = 7.5 ns « Tim e = 10.0 ns

F IG .14. Sequence o f  frames ( t - 2 . 5  -1 0  ns) showing evolution o f  a 2-mm-radius gold target; 
solid lines denote azimuthal field. Each frame is cylindrically symmetric about a vertical 

axis at the left o f  the frame.

experiment designed to measure the jet velocity and arrival time at the axis. 
Comparisons o f this sort have proved useful in determining the symmetry and 
efficiency o f beam power deposition.

The preceding computation included a beam energy deposition model 
which was based on a single classical Monte Carlo deposition calculation. Such a 
calculation provides information on the rate at which a single electron deposits 
its energy as a function o f p • dx (density times depth into target). It has been 
found, however, that the classical energy deposition picture must be modified
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T i m e  = 1 2 . 6  ns T i m e  = 1 5 . 0  ns

FIG . 15. Continuation o f  sequence shown in Fig. 14, for t = 12.5 — 20 ns.

because o f  beam stagnation caused by the diode magnetic and electric fields in 
or near the target [25, 26],especially for targets which are thin compared with 
the magnetic diffusion skin depth. This latter problem is now being studied 
with Monte Carlo codes which have been modified to include the effects o f 
fields on electron deposition, and with a combined Monte Carlo and hydrodynamics 
code. The latter code alternates the integration o f the conservation equations and 
the electron deposition calculations to attempt to provide a more self-consistent 
treatment o f the problem.
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T im e  = 22 .5  ns T im e  = 25 .0  ns

FIG . 16. Continuation o f  sequence shown in Fig. 14, fo r  t -2 2 .5  -2 5  ns.

Target design studies are concerned with determining the power requirements 
for breakeven and with the design o f targets for use with present-day machines.
The one-dimensional Lagrangian hydrocodes used for these studies include a 
model Tor thermonuclear energy production. A  breakeven level design [ 10] is 
shown in Fig.l 1, which plots the radius o f various regions o f interest as a function 
o f time. This simple gold sphere target was driven with 8 X 1014 W o f 1-MeV 
electrons. Designs in which the outer part o f  the gold is replaced with a lower-Z 
layer [27] have reduced the breakeven power by about a factor o f 2 to 3. Another 
class o f targets uses multiple concentric shells [28—30] to multiply the velocity o f 
the inner shell. This technique permits the beam power to be input over a longer 
period o f time.

There exists a variety o f two-dimensional effects which can change the 
relatively simple dynamics seen in the 1-D computations. Foremost among 
these is the question o f the stability o f these targets to spatial [30—33] or 
power [33] perturbations. The targets are potentially unstable to modes similar 
to the Rayleigh-Taylor instability both early in the power pulse during acceleration 
and later when the compressed fuel decelerates the inner part o f the dense 
pusher. These questions have been studied using two-dimensional hydrocodes, 
and an example [33] is shown in Figs 12 and 13. These figures show the growth 
o f  a surface perturbation on a planar iron slab as it is decelerated by compressed 
deuterium fuel. The non-linear regime consists o f narrow spikes coasting at a 
constant velocity. The intrusion o f these spikes into the fuel volume can destroy 
the compression and heating o f the fuel. Various stabilizing mechanisms are at 
present under study, and target designs which produce their output before spike 
intrusion would presumably be unaffected.
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A  final example o f two-dimensional target calculations concerns the possible 
importance o f magnetic pressures at high beam currents. A t 1014 W, a 2-mm 
radius, uniform current density 1-MeV beam produces magnetic fields o f up to 
108 G. The pressures produced by these fields are sufficiently high to affect the 
symmetry o f the implosion. This problem has been investigated using a 2-D MHD 
version o f the hydrocode. Such a code is constructed by adding Lorentz force and 
Ohmic heating terms to the conservation equations and including an equation to 
describe the transport and diffusion o f magnetic flux. Figures 14—16 show the 
results for a 2-mm-radius gold target and a 1014-W, 1-MeV beam. Significant 
asymmetries are seen at t = 22.5 ns, just before the implosion time. Beams which 
are peaked on axis, as seen in present-day experiments, lead to much better symmetry.

4. SUMMARY

The development o f particle beam fusion has been accompanied by the 
development o f computer simulation models and techniques. These models have 

been applied to beam and plasma problems ranging from the low-density ( 1 0 12 cm'3) 
collisionless beam regime to the high-density ( 1 0 23cm '3) collision-dominated 
conditions found in compressed fuel. Reasonably detailed two-dimensional time- 
dependent models have been constructed for many o f the problems o f physical 
interest. Present trends are in the direction o f increasing self-consistency. One 
would ultimately like to combine the diode PIC class o f model with the combined 
two-dimensional Monte Carlo deposition-hydrodynamics model, since the time 
scales for the beam focusing, deposition and hydrodynamics are often comparable. 
Moreover, the diffusion o f the magnetic field into the target, which can alter the 
electron deposition, should also be treated self-consistently. Such a treatment is 
beyond present capabilities, but work in these directions is progressing.
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Abstract

NON-LINEAR PLASM A K IN ETIC S: SO LITO N S, CAVITON S AND SPIKONS.
1. Introduction. 2. Modulation instability. 3. Soliton kinetics. 4. Caviton kinetics. 

5. General kinetic theory o f modulation interactions, 6. Fast particles and spikons.
7. General theoretical problems — concluding remarks.

1. INTRODUCTION

Although non-linear plasma theory is already a very well developed branch 
o f physics with fundamental researches [1 —5] and is used in many applications 
(laser-plasma interactions, astrophysics, accelerators, etc.), new and interesting 
problems have arisen in connection with high-power input in plasmas, for 
example by lasers or intense relativistic electron beams. The recent new 
explosion o f  interest in non-linear plasma physics is connected with the pheno
menon o f  self-formation in plasmas o f some non-linear self-consistent entities.
By non-linear plasma kinetics we mean a kinetic description o f  these entities, 
the nature o f which is non-linear. They are called solitons, cavitons, 
spikons, etc. and will be defined later on. The following problems need 
clarification:

( 1 ) What is the physical mechanism responsible for creating non-linear 
entities in plasma?

(2 ) Can an appropriate description be found for a number o f  such 
entities, for example by using kinetic equations o f some kind ?

(3 ) What kind o f interactions can exist for these entities with each 
other and with plasma particles or plasma waves?

Several other problems will be discussed later, but one point should be 
emphasized here: the difference that can exist i f  the plasma is an open or 
a closed system. An example o f an open system is a turbulent plasma with an
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input o f energy in some domain o f real space or к-space with energy transforma
tion and with some sink o f  this energy. The appearance o f non-linear entities 
can be considered as a self-ordering process. A  self-ordering process cannot be 
excluded in an open system, but in a closed system the formation o f  non-linear 
entities should be accompanied by an increase o f the entropy, for example by 
emission o f  some kind o f plasma waves. Thus these entities should coexist with 
plasma waves and interact with them. The elementary entities o f non-linear 
kinetics are some sort o f  clumps. Clumps have already been discussed by 
Dupree [ 6 ] and Kadomtsev and Pogutse [7] as random-phase short-lived correla
tions in phase space. Entities o f the kind to be discussed are o f a different 
nature, although some analogy exists. They have two essential features:

(1 ) The existence o f a mechanism which forms them (as we shall see later, 
it is the modulational instability); and

(2) The important role o f the phase correlations inside these entities.

It should be emphasized that concepts similar to clumps o f some sort 
already exist in current plasma theories. We have in mind that the averaging 
usually used to describe the particle motion leads to a concept o f quasiparticles,
i.e. particles surrounded by clouds o f particles o f opposite charge sign. Such a 
concept appears in the derivation o f the Landau-Balescu [ 8 ] collision integral 
by averaging an exact Klimontovich distribution function [9] and using the 
Bogolyubov hierarchy [ 10]. The average motion is described by quasiparticles 
with screened fields. It is obvious that the same particle cannot take part in 
both scattering o f I he other particle and the screening o f this scattering. But 
the quasiparticles behave so that their interaction is screened and the screening 
is produced by the quasiparticles. This is the only physical result o f the 
complicated mathematics usually employed to derive the collisional integral.

The more pronounced effects o f an ensemble o f particles with opposite 
charge signs which can be called quasiparticles or clumps, and which are some 
entities interacting with their surroundings in a compact way, are known in the 
weak non-linear theory o f plasma. In the presence o f a high level o f oscillations 
one can proceed in a further averaging o f the distribution function on a time 
scale larger than the period o f oscillations. As was shown for the first time in 
R e f.[l 1 ], the equation found by this averaging describes the interaction o f 
oscillations with ‘dressed’ charges, i.e. new quasiparticles described by the 
averaged distribution function. The scattering o f oscillation on the new quasi- 
particles is described by the superposition o f amplitudes o f the two processes, 
namely the usual Thomson scattering and the non-linear or transition scattering. 
The latter process is due to the presence o f the charge density which screens the 
charge o f the quasiparticle. The induced oscillations o f this charge density give 
the new process o f transition scattering. It was proved that not only is the
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scattering o f the quasiparticle different, but so is the bremsstrahlung process 
[ 12, 13]. The transition scattering [14] can also act to convert one type o f 
wave into another and even convert gravitational waves into electromagnetic 
waves [15]. The most important physical result o f a weak turbulent theory is a 
proof that this picture o f ‘dressed’ quasiparticles is self-consistent and can be 
formulated in a rather general form [2 ].

These examples show the importance o f the formation o f some plasma 
clumps1 in the description o f a non-turbulent or weakly turbulent plasma.
It can be expected that the effect o f clumping will be larger when the energy 
input in plasma increases. Indeed, new phenomena can start for a high level 
o f oscillations, known as modulation instability [16, 17]. The belief exists 
that this instability creates non-linear entities, such as solitons, cavitons and 
spikons. This phenomenon can also be described by some averaging o f non-linear 
equations [18] and the equations found should be those which describe the 
kinetics o f  such entities. We shall not discuss here this straightforward way to 
obtain the equations o f non-linear plasma kinetics but a much simpler,although 
not well grounded,way: ( 1) we consider the property o f a single non-interacting 
non-linear entity; ( 2 ) we try to understand the mechanisms o f its interactions 
with other entities or waves; and (3 ) we try to construct the kinetic equations 
describing the change in space and time o f the occupation number for these 
entities.

2. M ODULATION IN STAB IL ITY

Modulation instability appears in the case when the energy level o f 
oscillations is high and the dispersion o f waves is weak. In the case o f a weak 
dispersion the group velocity o f  the waves is small. Suppose there exists a density 

variation Sn localized in a certain space domain. The group velocity o f waves is 
changed there — say, decreased. The waves are accumulated in the region o f 
density variation and can push the plasma away by the ponderomotive force.
This can increase the Sn, thus leading to an increase in the waves accumulated in 
this domain and to an increase o f the ponderomotive force. This is the way the 
modulation instability can develop. Thus the plasma becomes locally 
inhomogeneous with possibly many density inhomogeneities present simul
taneously. These inhomogeneities trap the waves and are the sort o f clumps we 
are interested in here. The question is: under what conditions is the formation 
o f density inhomogeneities energetically favourable? Let us consider two types 
o f plasma wave dispersion:

1 The word ‘clum p’ is used here in a different sense from  that in Refs [6 , 7 ].
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(а) со2 =  c jo + a 2k2 (1 )

(b ) w 2 =  gJq —ß2/k2 (2)

The dispersion described by (1 ) is known for Langmuir waves,

O i= V T v Te, co0 =  Wpe
47rn0 e 2

as well as for lower hybrid waves, used in present plasma-heating experiments. 
The dispersion described by (2 ) is known for ion sound waves with к close to

for low-frequency waves with frequency close to cojjj=  eB0 /mjC, etc.
Without loss o f generality we can consider a plasma volume whose size is 

unity. Let us consider the two density distributions: a homogeneous one and a 
distribution when in one half o f the volume the density is n0— Sn and in the 
other half the density is n0 +  ôn (see Fig. 1 ). We shall suppose that in the case 
o f  homogeneous density distribution there also exists a homogeneous and 
isotropic distribution o f  waves. It is necessary to calculate the change o f thermal 
energy o f the plasma and the change in the energy o f the waves. To form the 
inhomogeneous distribution shown in Fig. 1 from the homogeneous distribution, 
it is necessary to compress the plasma and give an energy 5Wp to the plasma:

where y =  1 for isothermal compression and y =  5/3 for adiabatic compression. 
To calculate the change in the energy o f the waves.we suppose for simplicity 
that in the presence o f  the density variation ôn the change in can be 
described by

kd = — = ----- , ß =  co0 kd , co0 = w pi
rd vTe

(3 )

(4)

The change in the frequency o f  the waves ôu>2 can be found from

(5 )

k2 (z) >  0
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F IG .l .  Sketch o f  density in homogeneity.

For the untrapped waves the integration domain is 0 <  z <  l,and Eq.(5) gives

For trapped waves the integration in (5 ) is over z <  1/2. We find

5co2 =  ÔwL = -  со? ~~ +  3a2 k?, ( '
n0 “

The critical value кст o f  кц dividing the trapped and untrapped waves can be 
found from the condition o f marginal trapping (equalizing ( 6 ) and (7 )):

k2r =  | | —  (Í 
2cr n0

For isotropic distribution o f waves, only the average frequency change o f waves 
o f given к is o f interest:

(6)
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The integration gives for trapped and untrapped waves, respectively,

------  k ^ a 2 - —  a 2k3r ( k - k cr)
5o;f =  crV cr d o )

2kco0 2(0()k

In the case к >  kcr the contribution o f trapped waves is almost cancelled 
by the contribution o f untrapped waves. Nevertheless the sum o f these • 
contributions is always negative and the sign comes from trapped waves. Since 
the number o f waves is the same in cases o f both homogeneous and inhomo- 
geneous density distributions, the change in frequency is proportional to the 
change in the energy o f the waves 5 Ww:

=-(-) f- \n0/ J 80Ww = ~ i e J  / ^ 7 Wkdk ( I D

where W =  / Wkdk is the energy density o f the waves, and Wk is the spectral 
energy density o f  waves in the interval dk. Thus we found (cf. (3 ) and (11 )) 
that the inhomogeneous density distribution becomes energetically favourable if

/ :4a к
Wk d k > 7no(Te +  Tj) (12)

The numerical coefficient appearing in (12) can depend on the kind o f 5n(z) 
we consider. The order-of-magnitude relation which one finds for Langmuir 
oscillations is

I i
Wkdk

> 1  (13)к ф 0 (T e +  T j)

It should be mentioned that the way the conditions ( 12) and ( 13) are derived 
does not depend on the phase relations between waves (which could be regular 
or random waves).

Similar calculations can be performed for a dispersion determined by (2). 
For simplicity we consider only the case o f wave propagation along the density 
gradient k2 =  k| and suppose that (32/k2 u>q >  Sn/n0. The change in the energy 
o f the waves is

6w" =-(£ )  ¥  / kiWkit (14)
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The criterion for modulation instability is then

/
Т 2

k2 Wkd k > 7 n0 (T e +  T ¡) (15)

To find the growth rate o f modulation instability one can start with a 
simple approach, taking into account that the time development o f  the density 
inhomogeneity is much slower than that o f  one plasma oscillation. The Sn can 
be considered adiabatically. Thus for dispersion (1 ) one has

fco -  w 0 -  -  J E ^  =  | c o 0 - Eir >w (16)
у  /со о /  no

One then transforms this equation into the co-ordinate representation, taking 
into account that the E field is a longitudinal field E£ ы =  (к/к)Ej^ w ; Д =  V • V,

(  3E (r,t) a2 \ u)0 _  ( 5n (r,t) -»,->■ \

v  v  *  + т A E W ) )  = f v - (t ï t  E,r>,v  (17)

where E (r ,t) is a complex amplitude o f the strength o f the electric field 
E (r  ,t) e x p (-  iw 0 t)- The second equation for 6 n(r,t) can be derived using the 
continuity equation and the equation for ion motion:

Э  -*• - 4  - >
—  5 n (r , t )= - n 0 V- v¡(r,t)

(18)

v ^ t )  + —  Убп(Гд) = e E p (r",t) =  V  e
3t n0 p mecoo

where Ep(r ,t) is the polarization ambipolar field which acts on ions. By 
neglecting the electron inertia one finds the polarization field. From (18) follows
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FIG.2. Dependence o f  modulation instability growth rate on wavenumber.

The modulation instability can be found from the set o f equations (17) 
and ( 1 ̂ lin eariz in g  them in the presence o f a pump wave with amplitude E0 

and к = k 0. For the perturbations o f fields and Sn a dispersion equation is found:

1 =
Eg

47rn0 T e (c j2 —k2 v|)
3k2v ie CO

+  -
pe

^ (k ,k 0) (20)

where ф is a function o f the order o f unity for к o f the order o f k0, diminishes 
as (k 0 /k) 3 for к >  k0 and as (k/k^)3for к ^  k0 and is also essentially angular- 
dependent. It vanishes both for к ||k0 and к 1 k 0. Shown in Fig.2 are the growth 
rates o f Langmuir wave modulation instabilities Г normalized to the maximum 
growth rate Г =  у /утгх as a function o f the wave number к, normalized to the 
characteristic wavenumber K=k/k :

_2L u = £̂1 Ijl
T m a x  “ Pi J 47r noT e ’ * VTe 12

eo =  E0/v /̂ 4 T n V I >  ; ц =
4me

3mj

(21)

It must be emphasized that the modulation instability o f the Langmuir field 
is automatically set up i f  the energy is continuously pumped into these waves
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and the collisional damping o f the waves does not play an essential role. Indeed 
the non-linear Landau damping (induced scattering) in the absence o f modulation 
instability leads to a redshift o f  Langmuir waves, thus diminishing the k-values 
up to the values when the threshold o f modulation instability is reached (see 
Eq.(l 5)). Then the density in homogeneity will develop.

The diminishing size o f these density inhomogeneities leads to an increase 
o f the к-values. The numerical ID  simulation o f Ref. [19] shows that, indeed, 
in the presence o f a strong regular pump in the domain o f small k ’ s, the energy 
flows towards higher к ’ s and the spectrum Wk ~  1/k2 is formed. The result 
o f  the development o f the density inhomogeneities is different in ID and 3D 
cases. In a ID  case, solitons can be formed.

3. SOLITON KINETICS

The formation o f solitons in a ID  case is accompanied by ion-sound 
. emission which is necessary for increasing the entropy o f the plasma. We restrict 
ourselves here to the case o f Langmuir solitons, although the results will be valid 
for any waves with the dispersion a 2 k2. It is useful to introduce the dimensionless 
variables:

X [ü.
rd 4  3 ’

v =  -
5n

n0M

4m„
e =

( 22)

Then Eqs (17) and (19) in the 3D case have the form:

Э

w
.bt (  a
1 дт Ч э Г

■ (ve )

д т
а - [ Л .  i_\ _/jL _!Л 
2 W ’э£л W  ’ эГ/

(23)

The velocities in the variables used are measured in units o f ion-sound 
velocity. We define a soliton as an exact ID  non-linear solution o f (23), whose 
density perturbation and amplitude o f the electric field move with a constant 
velocity u and they both vanish for ? ± °°. We find from (23)

1
v =  — I2 = - X|e|2 ; X =

1 - u 2
(24)
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Equation (23) is not valid for u <  T¡/Te (see below). In this case one finds 
X =  Te/(Te +  Tj). Since to trap the Langmuir waves it is necessary to have a 
density depletion, the solitons exist only for subsonic velocities. The soliton 
solution o f (23) has the form [20]:

e0exp ■ iJ2t +  i -  (£ -  ur)

e =

cos h e0л / у  ( £ ~ UT>

(25)

Certain integrals o f Eq.(23) exist. These are the conservation o f number o f 
quanta N, the conservation o f energy H and the conservation o f momentum ?. 
One finds

H
- I

d

W
2 - ,  v2 + v 2

+  v |e I2 H------------ (26)

bv
N = , | e | 2d * ;  - = - ^ - v  

For a soliton with e0 >  1 we find

(27)

H =  —
Xy/2X

(1 -  5u2) ; P = ^ \хе%\^/тк ; N =  2 eo (28)

It is easy to understand why for the ID  case the balance between the pressure 
and Langmuir field ponderomotive force can exist. Conservation o f number o f 
quanta means |e|2 £0 =  const, |e|2 ~  l/£0, where £0 is the characteristic size o f the 
density depletion, the ponderomotive forceFe ~  Э/Э£|е|2 ~  l/£o- The condition 
for wave trapping,ôn/n0 k2 r¿,means ôn ~  l/£jj and the pressure force 
FT ~  (Э/Э£)Тбп ~  l/^o- Thus the size £ 0 is diminishing up to the value when 
the pressure force prevents a further decrease in £0- The balance established 
is stable, since any increase in ij0 from equilibria value will lead to the domination 
o f  the ponderomotive force which acts to diminish the %0, and the decrease in £ 0 

from the equilibria value will increase the pressure force and thus increase the £0.
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The solitons are well localized in space, so one can imagine an ensemble 
o f separated solitons. I f  the distánce between them is essentially larger than 
their width they can be considered as a soliton gas. Such a picture was proposed 
by Kingsep, Rudakov and Sudan [21 ]. Let us analyse it.starting with a rough 
and simple model. The solitons could interact i f  they collide with each other.
The numerical calculations o f soliton interaction using Eq.(23) show that the 
solitons can merge with each other [22]. The merging process is possible only 
i f  the amplitudes o f two solitons are large,e0 >  l.and almost equal [22, 23].
Let us consider a model in which the ensemble o f solitons consists o f solitons which 
are the result o f merging solitons with the amplitude ê 0), i.e. e" =  2ne$,0)> where n is an 
integer number.

The last statement follows from the conservation o f number o f quanta 
during merging, confirmed by the calculations performed in Ref.[23]. Indeed, 
in merging two solitons with equal amplitudes e0, the new single soliton will
have the amplitude =  2e0. Using the conservation o f energy H0 ---- el, one
can find that the merging o f solitons is possible only if  ion-sound waves are
emitted. Indeed Hx ---- e3 = — 8 e¡), i.e. Hj = 8 H0. The initial energy o f the
two solitons was 2H0. Thus the difference between the final and the initial 
soliton energy is H[ — 2H0 =  6H0. This energy is negative since H0 <  0. The 
same amount o f positive energy, — 6 H0, should be taken by ion-sound waves.

We now introduce the distribution function o f solitons Fn which is the 
number o f  solitons with amplitude eg per unit length. The problem o f non
linear kinetics o f  the soliton gas is the problem o f finding a kinetic equation for 
Fn. We try to find it while not fixing the constant which determines the cross- 
section o f merging. Let us count the rate (9Fn/9t)_due to the solitons which 
are leaving the state n. We should take into account both the merging o f 
solitons and their splitting by sound waves, which is the reverse process o f 
merging. Since the probability o f soliton collision is proportional to F2, and 
the merging leads to loss o f the two solitons from the state n,we have
(9Fn/9t)_ merg---- 2F£. The sound waves with sufficient energy to split the
soliton in the state n are emitted in the merging o f solitons in the states n +  k, 
where k >  The amount o f  energy emitted in sound waves due to the merging 
o f solitons in the state n +  к is — 6 Hn = — 6  X 8 kHn. Only half o f it ,
— 3 X 8 k Hn,is available for splitting since the sound waves have both positive 
and negative density variation, but the solitons have only negative energy 
variation. This assumption was verified in the numerical calculations o f Ref.[22]. 
The splitting o f  solitons with the amplitude eg leads to the formation o f two 
solitons with the amplitude eg/2. The energy needed for splitting is proportional 
to -  (eg ) 3 +  2 (e"/2)3, i.e. it is i-3/4)Hn.

Thus the number m o f splittings produced by sound waves emitted in the 
state n +  к is —3 X 8kHn = m(y,-3/4)Hn), i.e. m = 4 X 8 k, and one finds the rate 
at which the solitons escape from the state n:
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OO

^ Ь “ 2р" - 1 4х8кр" « (29)

k = l

Similar calculations also give the rate at which the solitons reach the state

OO

8k+' F"+ l + ' (30)
k = l

The equation

dt

n /9Fn\ / 9Fn\

? ' Ы 1 + Ь ? ) + (3,)

is an example o f an equation describing non-linear kinetics. Let us search for the 
stationary distribution o f thetype

F,
П (e n )7  2 n7 (e { ° ) )7

3
For 4 > 2  it is possible to sum up the series in (29) and (30) and find that 7  

should satisfy the equation

y 3 -  2y2 -  12y -  8  =  0 ; y = 8 X 2 '2У <  1 (32)

The approximate solution o f  (32) with an accuracy o f  three figures is [41]

£n 90/7
t  =  ~ :  =  ! - 8 4  (33)

2  £n 2

This is obviously rough, but at least it gives a picture o f the diffusion o f 
solitons in the amplitudes e0 toward higher amplitudes. The larger the 
amplitude o f  the soliton the less its width and the larger the value o f the 
effective к-number. It is simple to see that the space Fourier-components o f 
the field o f solitons has the same value up to kmax ~  eg for solitons o f any
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amplitude. Thus to calculate the total energy o f solitons for a given k,one 
needs to count the number o f solitons with n >  nk where e "k ~  k, i.e.

The spectrum 7 = 1.84 is close to the result o f the numerical simulation [19],
7  =  2, although the model used was rough. The energy is diffused to larger 
к ’ s until it reaches the tail o f  the thermal particles and will be absorbed by fast 
particles. But even before the interaction with resonant particles — linear 
Landau damping — non-linear Landau damping can influence the diffusion o f 
the energy to larger k ’ s [24—26]. Non-linear Landau damping is scattering 
by electrons moving through the soliton. This process should diminish the 
frequency and lead to a decrease in the group velocity o f the waves in the soliton, 
thus stopping the soliton (see [32]). The number o f quanta in the process o f 
non-linear Landau damping is conserved, and thus the amplitude o f thé soliton 
is approximately conserved. Two consequences are possible due to soliton 
stopping:

(1 ) In the absence o f a constant pump o f energy in the waves, the stopping 
o f  solitons will decrease the rate o f collisions. The mean distance between 
solitons is enlarged by merging. When the mean free path for soliton stopping 
becomes o f the order o f the mean distance between the solitons, the merging 
stops. Thus one should expect a rapid decrease o f the spectra Wk for some
к >  kN, where kN is determined by the equalization o f the mean free path for 
stopping with the mean distance between the solitons.

(2 ) In the presence o f  a constant pump, the spectra should be changed 
essentially for к >  kN also. But instead o f having the spectra Wk reduced, one 
should expect a higher spectral energy density than in the absence o f non-linear 
Landau damping. Indeed, for к >  kN the solitons will be accumulated until the 
mean distance between solitons is equal to the mean free path which is in inverse 
proportion to 6q [24, 25]. Thus
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The nmax is determined by linear Landau damping on fast particles. The final 
result o f  soliton diffusion is the absorption on fast particles and the creation o f 
the fast particle tail. Thus the model described gives an example o f a mechanism 
working as the energy sink o f Langmuir waves in fast particles.

4. CAVITO N KINETICS

'The 3D development o f modulational instability is not so well understood, 
since the balance between the pressure force and the Langmuir wave ponderomotive 
force is not possible. This statement is, strictly speaking, valid only for a cavity 
the sizes o f which in all three dimensions are o f the same order o f magnitude, 
i.e. I-, *= £ 2 £3 % £0 ■ The conservation o f number o f quanta gives |e|2 £o =  const
and F e ~(Э/Э£)|е|2 ~  l /£4 while FT ~  T(9/9£)Sn ~  1/£q. Thus the smaller £0 

the larger the ponderomotive force, and the pressure force cannot stop the 
self-contraction. The non-stationary development o f the modulational contraction 
leads to a possibility o f contraction o f density depletion up to a size o f  the 
order o f a Debye radius. In this connection the problem o f so-called Langmuir 
collapse has been raised [ 27]. During this contraction some self-similar motions 
can exist for finite time intervals. One o f the set o f self-similar motions can be 
changed to another.

Let us start with definitions. We define a caviton as a self-similar non- 
stationary process o f the field self-contraction. We say that the collapse is the 
process o f modulational field self-contraction which develops finally up to the 
size o f Debye radius. The cavitons can exist on time scales much less than the 
time o f the collapse, and the collapse ( i f  it exists) can be formed by a set o f 
self-similar solutions, i.e. by a set o f cavitons which replace one another.
The problem is whether collapse is possible or not. In this connection the. 
questions arise:

(1 ) Whether during self-contraction the characteristic sizes o f the cavity 
in all three directions should be o f  the same order o f magnitude;

(2 ) Whether the number o f  the quanta N in the cavity must be constant 
or, in other words, whether the cavity can lose the quanta during contraction;

(3 ) Whether one self-similar solution (e.g. subsonic) can be simply 
converted to another self-similar solution (e.g. supersonic) or some additional 
irreversible processes (such as ion-sound emission) can occur in the intermediate 
stage;

(4 ) Whether the development o f  a hierarchy o f modulational disturbances 
similar to that o f  eddies in an incompressible liquid is possible.

The complete answers to these questions do not at present exist, although 
there are some indications o f the kind o f answers one can expect to have in the 
future.
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Let us first take up the question o f spherical subsonic motions. In 
Refs [27, 28] it was shown that the characteristic size o f any subsonic cavity 
with initially negative H tends to zero in a finite time interval. The real problems 
are:

(1 ) Whether the motion becomes supersonic in a finite time interval 
before %q tends to zero (further analyses have shown that this is indeed the case);

(2 ) Whether the spherical symmetry is broken in a finite time interval 
during the self-contraction (further investigation has shown that the subsonic 
cavitons are usually not spherically symmetric).

Thus one has not proceeded much further from the simple argument that 
in the 3D case the balance between the ponderomotive force and the pressure 
force is not possible for a cavity with sizes o f the same order o f magnitude in 
all three dimensions.

Note that near the threshold the modulation instability behaves similarly 
to the gravitation instability. This analogy helps our intuitive understanding 
o f what can happen in the 3D case. Obviously the gravitational contraction 
cannot go at the same rate in all three directions. Even a small difference in the 
initial contraction along one o f  the axes will lead to a structure similar to a 
pancake which is nothing but the formation o f galaxies. Although rotation hejps 
in the formation o f such structures, pancake structures should be formed even 
in the absence o f rotation. The further development o f the gravitational 
instability can lead to galaxy arm formation .2 In the 3D development o f 
modulation instability the formation o f  a pancake structure is also quite 
probable. Indeed, a balance between the pressure force and the ponderomotive 
force tends to be established, but this balance is possible in one direction only. 
The pancake structure should then continue to contract due to forces acting 
on its edges. Numerical simulations have verified this picture. The contracting 
entity with a balance established in one direction can be called a quasi-soliton 
since its parameters vary slowly compared to the time o f the balance established 
in the direction perpendicular to its plane. It was first shown in Ref.[26] that 
the spherical contraction develops to a spherical quasi-soliton. The use o f 
conservation o f number o f quanta N and the energy H leads [ 26] to the law 
o f  the change o f  the distance o f the spherical layers R (r) from the centre 
R (r ) -*  т/у/5, i.e. the velocity reaches l/^/Tof the velocity o f sound, and 
e0 l /т2, i.e. the thickness o f the layer diminishes faster than the radius. This is 
a good example o f all the motion being subsonic and not converted to a super
sonic motion.

2 The theory o f  galaxy arms as solitons was developed in Refs [29  — 31].
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Spherical quasi-solitons, however, pose the following problems:

■ (1 ) Azimuthal modulation instability can develop during the process 
o f contraction and thus the spherical symmetry will be lost;

(2 ) It is not certain whether or not sound emission can take essential 
energy from the quasi-soliton during contraction.

I f  the ion-sound emission takes place it is not possible to use the conservation 
o f energy H as in Ref.[26], The statement in [33] is that to take the sound 
emission into account one should use the conservation o f the Lagrangian L instead 
o f H. The analyses [34, 35] show that for some initial R (0) the contraction is 
converted to an expansion and the energy and momentum are taken by the ion- 
sound waves emitted. This could be an example o f an irreversible process 
preventing the collapse discussed above, but the problem needs a further, more 
detailed, analysis.

Let us consider a more realistic model o f a pancake type subsonic self
similar motion, i.e. a subsonic caviton. Let us suppose that the number o f quanta 
in the caviton is conserved,

ße |2 d£ = 7rR 2 (T )£ 0 (r)|e0 ( r )|2 =  const (34)

where £0( r ) is the thickness o f the pancake shape o f the caviton and R (r ) its 
radius. The subsonic motions are described by the equation

9 ( d e  Ь 9 \ -Л  Э
—  ■ ( i —  +  — •—  € = -  —  • (e |e I2) (35)
4  \ Эг \Э£ 9£ / / 9£

Neglecting in the first approximation the term with the time derivative, we find 
an estimation

9 9 e0 2 1
—  • —  e =  —  ; eg ~  —
9£ 9£ ¡-I Û

and, using (34), R 2 ( r )  ~  £0( r )- Thus,in time,the pancake structure is more and 
more pronounced. Supposing the phase o f the field is changing essentially 
(about 2n) only in the distance R, we find in the next approximation 

R£0 ~  t  or £o ~  t2> £o  ~  T2/3> R  ~  t  1/3• This gives a self-similar solution 
(caviton) [26]:
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<r 1 »
r 2/3 \  r  2/3 T 1/3

(36)

where ф is a function o f £ and it determined by the initial conditions. The r in
(36) is time counted in the past from r =  0, which is the time at which the 
singularity can occur. But really the singularity in (36) cannot occur since 
Eq.(36) is valid only for subsonic motions. Equation (36) shows that the 
characteristic velocity is increasing in time. Indeed

The motion becomes supersonic for r <  1. Thus (36) presents a self
similar solution valid only for a finite time interval, i.e. a subsonic caviton. The 
density variations reached at т =  1 are still very small:

A  different self-similar solution o f (36) can even be found by supposing that all 
the terms in (36) are o f the same order o f  magnitude:

This caviton does not conserve the number o f quanta N ~ y / T -*  0, i.e. the 
caviton emits quanta during contraction. The numerical calculations performed 
to date give an indication o f the appearance o f  the cavitons (36) but not (37). 
The essential point is that both cavitons (36) and (37) convert themselves to a 
supersonic motion atr <  1. Strictly speaking, we know only the tendency since 
the intermediate stage r  o f the order o f unity is not investigated in detail. Let 
us now consider a supersonic caviton u >  1. The numerical investigation (see 
e.g. [26]) shows that in this case the pancake structure is not very pronounced, 
i.e. R is larger than £0>but their ratio is not enlarged in time (R /£0 ~  3). So we 
shall consider for simplicity the case when all the dimensions o f the caviton are 
o f the same order o f  magnitude. Since the motion is supersonic, the d 2 v / d t 2 

term in the equation o f density variation dominates, and, by order o f magnitude, 
v ss r 2 |e|2/£2. Neglecting the term i(d/9t) in the equation for the field, we have

Sn me

n0 m¡

(37)
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|e |2 ~  i /r 2 Supposing N ~  |e|2 =  const, we find £ ~  r 2/3. This gives a self
similar solution:

The neglected terms are small for т <  1 if the phases ф o f  all the waves tend to be 
equal, ф -*■ т1!3 -*  0. This phenomenon o f self-phasing is the most characteristic 
for the caviton described by (38). It is similar to the phenomenon for the 
explosive instability in the three-wave interactions. The problems connected 
with the caviton (38 ) are the following:

(1 ) Whether or not the emission o f ion-sound waves plays an essential 
role during the contraction;

(2 ) Whether or not the supersonic caviton (38) is stable in the frame o f 
the equation used and whether or not the additional small terms can change its 
behaviour essentially;

(3 ) What is the domain o f validity o f the equation used to find the 
caviton (38) and whether or not the additional terms not taken into account 
can stop or change the behaviour o f self-contraction.

We shall consider the last problem in the next section. The first problem 
was considered in Refs [25, 30]. Note that one can expect the process o f 
emission to be essential since the motion is supersonic. In [ 25], perturbation 
theory was used to calculate the total energy emitted in ion-sound waves during 
the total time o f contraction described by (38). There are two possible cases 
when the total energy emitted is large; (a) when it is o f the order o f H, i.e. the 
initial energy o f  the caviton; and (b ) when it is o f the order o f Ncope, i.e. the 
total electric field energy o f the caviton. When the energy emitted is o f the 
order o f H, the process o f emission can increase the rate o f self-contraction. 
Indeed, the greater the amount o f energy emitted in S-waves that is positive, 
the larger is the absolute value o f H, since H is negative. When the total energy 
emitted is o f the order o f  Ncjpe the solution (38) will be a contradictory one, 
since in deriving it we start with the conservation o f the number o f quanta.
The perturbation theory o f Ref.[25] shows that the total energy emitted is o f 
the order o f Na>pe.

The second problem was taken up in [26] by including in the equations a 
small term due to Landau damping. The authors observed in the computations a 
sudden change in the behaviour o f  the solution, which becomes subsonic. The 

other small terms seem to do the same thing.
One can also ask whether another self-similar solution which does not 

conserve the N can exist.

(38)



NON-LINEAR PLASMA KINETICS 239

Searching for a solution o f the type

e =  |e| e11̂  ; |e| =  т̂ ф

in the case when all the terms o f the equation for the field are o f the same 
order o f magnitude (not neglecting the i(9e/dr) term) one finds a caviton [34]:

which does not conserve the number o f quanta N ~  1 /sfr. One concludes then 
that in the case when a source o f quanta does not exist in the centre o f the 
cavity, Eq.(39) can present only the expansion process. It is uncertain whether 
or not the caviton (38) describing self-contraction due to some instability,- 
small additional non-linearity, or sound emission will convert itself to the 
expansion caviton (39). In the expansion the velocity £/t ~  l/y 'ris  decreased 
(since t  increases) and the process (39) can proceed only to the stage when 
motion becomes subsonic. The question is open as to whether such a simultaneous 
substitution o f  a supersonic by a subsonic caviton with oscillation around sound 
velocity can indeed happen. The numerical analysis [26] indicates that the 
motion becomes near-sonic, i.e. it proceeds with velocities close to but less than 
the sound velocity. One can find a near-sonic caviton by assuming £ =« r, which

The questions that need an answer for a more detailed understanding o f 
the pancake caviton ( 3 9 ')  are;

(1 ) What kind o f mechanism keeps the motion near-sonic?
(2 ) Is the ion-sound emission important or not?
(3 ) What is the role o f ion-non-linearities, i.e. steepening o f  the density 

profiles?
(4 ) Since the motion is slightly subsonic, the sound waves emitted by one 

caviton can reach another, and the question arises whether the splitting and 
merging o f  cavitons can occur in the same way as described for the ID  solitons.

(39)

gives v =  — |e|2 ; |e|2 R2£ = const ; |e|2 ~  l/£2, i.e. R2 ~  £ ~  r;

(39 ')
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It is possible to construct a general kinetic theory o f modulation 
interactions [36, 37] and find the domain o f validity o f Eqs (17) and (19) as 
well as all necessary corrections to these equations. We shall show that the 
standard theory [ 1 , 2 ] o f  non-linear plasma responses found by perturbation in 
the strength o f the electric field leads to general equations which describe the 
kinetic effects in modulation interactions. The difference between the non
linear equations for wave-wave interactions and the equations which we find is 
that the Дсо — the difference o f the frequencies o f the two interacting fields 
Ekj and Ek2 -  should not be fixed arbitrarily to be equal to the difference o f 
the frequencies o f the waves Дсо =  cokj — cok2 but should be found as a result 
o f the solution o f the equations. The non-linear frequency shift is larger than 
the frequencies o f  the waves if the threshold o f modulation instability is 
reached. Thus Дсо should be determined by the process itself. The use o f two first 
terms in the expansion in fields is possible since the non-linear responses are 
regular functions o f Дсо, even diminishing as Дсо increases. The starting 
equation cubic in E is a standard one [2]:

5. GENERAL KINETIC THEORY OF M ODULATION INTERACTIONS

kekEt = 4n S . ,  E, E ,d , ,  +  4тг / 2 .  , ,E,  E ,E 3d
P

1,2,3 E 1 2 *-*3 1,2,3 (40)

where

E i = E ki> E 2 =  Ek2, Е3 = Екз; к = { £ ,co}

dk=dîcdco ; dj 2 =  S ( k - k ! - k 2)d k !d k 2

d i , 2 , 3  =  5 ( k - k i  _ k 2 _ k 3 ) d k 1 d k 2 d k 3  ;  e x =  e k

к
n =  — , X = -----

к со —kv

and

X (41)
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2 l ’2’ 3 2i / x (ni ' Эр)  Хг+31 ( " 2‘ а ? )  Хз ( " 3' Э р )

+  П
_ э

Эр

dp

(2тг)3 (42)

We suppose that Доо is arbitrary but |Дсо| a>pe.and introduce the 
positive part o f  the field E+ with the frequency close to cope and the negative 
part o f  the field with the frequency close to — cope. Then we write Eq.(40) for 
E+ on the left-hand side. The 5-function in the first term on the right-hand side 
o f this equation gives cope =  +  co2, i-e. only one o f the fields could be the
Langmuir field. The second one should be either a low-frequency field 
(o jpe =  o>pe +  cj1ow freq )  or the double plasma frequency field (cope= - c o pe+ 2 co pe). 

We shall call these the virtual fields. For the second term on the right-hand 
side o f (40), all the three fields can be Langmuir fields since the conservation 
law cope =  со i +  o >2 +  can be satisfied by the two possible substitutions 

w p e = G J pe + a ; p e- C J pe a n d  w pe =  -  шре +  w pe +  w pe (note that Z 1>2>3 is 
symmetric on the change in indices 2 ^  3). Since the amplitude o f the virtual 
fields is small compared to the Langmuir field, it is possible to use Eq.(40) with 
only the first term on the right-hand side to find the virtual fields through the 
Langmuir field. This is possible since gj1ow freq «  cope — ojpe, 2<юре =  cope +  ы ре.

This is how we find an equation which contains only the Langmuir fields:

eE+ =  [ 2 ^ , 3  El E+2 Ebd^ . 3  , Z f « a =  Z 1>2>3 +  E '1>2)3 ; gl =  ̂ -
J  xejkj

~  87Г
^  1,2,3 _ ik" ^ 1’2’3 +  ^^l.2+3g2+3 ^2,3 )

i e jk i

(43)

(44)

^  г̂7Г
^  1,2,3 — ^  3,1,2 2S3i l + 2 g i + 2 S1>2) (45)

The £  describes the processes going on through the low-frequency virtual field, 
and £ ' describes the processes through the double plasma frequency wave. We 
can proceed further by using an expansion o f the non-linear responses in the 
natural small parameter
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Then 2 ' is less than S by a factor ß and we find

2 eff as 2  о =  -
e2 +3 (k -k jK k j - k a )

(46)
4jrn0 T|f4.3 e2 + 3  k k i k 2k 3

where T®f£ 3 is the effective temperature

1 ( е й з - О О ^ + Ё з ) 2
; u>2 +  w3 = Дш2 +  Дсо3y e ff

2 +3

(47)

and e® and e(e)are the ion and electron part o f е = е(е)+ е 0 ) — 1 .
Note that the ratio a/ß is arbitrary in (46). In the weak non-linear theory 

or weak turbulence a/ß «  1. The equations derived from (43) and (46) are 
more general than those from (17) and (19). First o f all, they are valid for any 
non-Maxwellian distributions o f electrons and ions and take into account the 
kinetic effects such as non-linear and linear Landau damping. The equations (17) 
and (19) can be derived from (43) and (46) if the following assumptions are 
made:

(1 ) The imaginary parts o f  e^ { 3 and e(2e+ 3 are neglected;
(2 ) The distribution functions are Maxwellian and T |f| 3 =  Te ;
(3 ) The real parts o f e^ 3 and e^ 3 are essentially larger than unity and

Then defining a density variation 6 n (r,t) and the amplitude o f the electric

I ̂ 2 +t31 Vjj -4 Дсо2 + Дсо3 < | kT2 + k31 v je

field È (r*,t) by the relations

n 0 n0

(48)

Ä -кз) Е+к г Екз
5 (k 1- k 2- k 3)dk2dk3 (49)

no eki k2 k3 4irn0 Teк
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we find that Eqs (43) and (49) are converted to Eqs (17) and (19). The 
advantages o f  this approach are:

(1 ) A  general and systematic method exists in deriving the equations 
for the Langmuir field valid for any relation between the dispersion corrections 
and the non-linear frequency shift;

(2 ) It is simple to have a generalization for arbitrary particle distributions 
taking into account various kinetic effects;

(3 ) It is possible to find the necessary corrections to the simplest set o f 
Eqs (17) and (19) derived in the first approximation in the parameters a and ß;

(4 ) The relations o f  the modulation interactions to the other non-linear 
processes can be easily understood.

Let us start with the last problem. The two known non-linear processes, 
the decay process and non-linear Landau damping, are indeed included in (46).
The imaginary parts o f e^ 3 and e^ 3 describe non-linear Landau damping.
This process will lead to the soliton-breaking already discussed above. The 
processes o f sound emission discussed are no more than the decay processes 
and are described by the zeros o f e2 + 3 in (46).

Let us take up the problem o f corrections to Eqs (17) and (19) [36]. The 
presence o f the e ^ /e  term in (46) means a severe cancellation o f the contributions 
o f the two terms in (44) appearing correspondingly from the cubic non-linear 
plasma response and from the iteration o f a quadratic non-linear plasma response. 
Because o f  this cancellation, the terms o f further expansion in the parameters a 
and ß can be o f the same order o f magnitude3as that taken into account in (46). 
The corrections are due to: (a) the interactions through the virtual field with 
frequencies close to the double plasma frequency, (b ) the further expansion in 
a and ß o f  the interaction through the low-frequency virtual field, and (c ) the 
terms coming from the partial loss o f local quasineutrality. The result o f calcu
lating the sum o f these in the 1D case is 52eff:= 0 but in the 3D case 52 eff£= 0.
This means that the corrections are not essential for ID  solitons and decrease 
in time for the pancake quasisolitons in the 3D case. For supersonic cavitons 
the pancake structure is not pronounced and one finds [36, 38] that the correc
tions are essential even for

3 In each o f the two terms (4 4 ).
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This means that the supersonic caviton cannot lead to a collapse. Even 
before reaching

the supersonic caviton can become unstable due to the corrections which 
are still small. I f  indeed the supersonic caviton is then converted to a near-sonic 
one,the corrections 52eff become less important since the near-sonic caviton has 
a pancake structure. But also, independent o f this argument, the estimates show 
that the corrections 0 Eeff are small during the total time o f self-contraction o f a 
near-sonic caviton. Thus the caviton (40) can lead to a collapse i f  indeed the 
problems with the caviton (40) already listed above are solved.

There also exists an essentially kinetic effect which stops the collapse [39] 
(and see [42]). This is an £ -»■ s non-linear Landau damping [2]. Suppose that the 
near-sonic contraction proceeds up to r =  rd. The result o f that will be 
fast-particle creation accompanied by an accumulation o f density fluctuations. 
Owing to the Landau damping on fast particles, the cavitons become empty 
o f Langmuir waves much fastêr than the density depletion o f the caviton can 
be dissipated. Then the transition radiation o f fast particles on the accumulated 
density inhomogeneities gives the emission and reabsorption o f the Langmuir 
waves with со =  cope, к =  0. Thus the empty cavitons transform the energy o f 
the Langmuir waves o f the non-empty cavitons to the fast particles and stop the 
collapse. The damping rate can be estimated from the probability o f the £ -*■ s 
scattering given in Ref.[2]:

=  12lJ ri
k, T k t d k i
2 k4 4 (50)
о K i r d

and differs from the result in [39,40] only by a numerical factor 1/3. The 7 ^ is the 
rate o f linear Landau damping on fast particles v >  vTe/k j rd, к j rd <? 1. The estimation 
shows that the very small density inhomogeneity can stabilize the collapse. The 
stabilization occurs even for

5n2 n' /me W®
—  — л/ т  ( 51)n0 n0 V mj n0T e

if the energy density in the fast particles n 'T ' is o f the order o f the thermal 
plasma energy density n0 T e (see the discussion in § 6 ).
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The result o f the previous discussion can be summarized as follows. The 
accumulation o f the energy in the domain o f the small k’s leads to the develop
ment o f  modulation instability which drives the energy back to the high 
к-values until it reaches the tail o f the particle distribution and is damped by 
linear Landau damping. The fast-particle creation can be considered as a 
dangerous effect for laser fusion and electron beam/plasma interaction. This 
situation leads to a tendency to exclude from the experiments the conditions 
when the modulation instability is settled. The main question is whether indeed 

the modulation instability leads to the transform o f the energy into the fast 
particles only or whether there are conditions when the main body o f the 
particle can be heated. There are some indications from the numerical calcula
tions that at the last stage o f development o f the modulation instability 
some new non-linear motions o f the soliton type can be formed which have 
high velocity and are rapidly damped. They are called spikons. Perhaps they 
should be connected with the fast particles present and have velocities higher 
than that o f  sound.

We now discuss whether it is possible to have supersonic solitons and whether 
or not the main-body particles can be heated. In the absence o f fast particles 
there are only two possibilities for supersonic solitons:

(1 ) The antisoliton (or the hole soliton) for which instead o f |e| -+ 0 at 
£ -> ± oo one has |e| -*■ 6^= const for {  -»• ± °°:

6. FAST PARTICLES AND SPIKONS

The antisoliton moves with velocity higher than that o f  sound. The processes 
o f formation and interaction o f  antisolitons were not investigated, but apparently 
the antisolitons can be damped on the fast particles only.

(2 ) The soliton described by higher non-linearity [36, 37]: This is the 
special case when 1/Teff, which determines the coupling constant in the cubic 
non-linear term, is essentially less than T. It can happen only for non-thermal 
particle distribution [36].

2
(52)

One finds:

e0 exp[—ii2r  +  i(u/2 )(|~ur) ]
(53)e =
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4 3(u2— v2) 3/2 ’ ^ 2 T (T e f f ) 2

e4oX_____  . M(Te f f ) 3M(Te f f ) 3

(54)

1 1

Teff ~  me / v dv 2n ’ ( j e f f )2  rrig

1 Эф dp 1 __ 1

b v 9v v 9v 2n

1 Э 1 90 dp

Such sölitons can exist for supersonic velocities u >  vs but u should be not very 
different from vs (they can exist only for large e0). The non-linear Landau 
damping diminishes the e0. The existence o f such a soliton in plasma would be 
rather exceptional.

The most important and most likely possibility o f  having a supersonic 
soliton appears in the presence o f fast particles, i.e. in the case when fast 
particles change the dispersion o f Langmuir waves. In what follows we 
describe the proposal in Ref.[41 ] to explain the spikon phenomenon. We should 
mention that in the absence o f thermal particle heating, the energy o f the 
external source is converted to the fast particles. We shall consider the case 
when there is a real change in the energy o f the plasma by the external source.

consider the simplest case when the fast particles have thermal distribution with 
temperature T ' >  Te and density n '<  n0. For w pe/vTe >  к >  w pe/vTe the 
damping o f the Langmuir waves on fast particles will still be small but their 
dispersion can be determined by the fast particles:

о ß2 -, w Pe
“ k ; ß ^  ( 5Î

The conditions necessary to have approximately the dispersion (55) are:

We find a non-linear equation which should now be used instead o f (23):

Since the energy is released in the fast particles, we have n 'T' >  n0 Te. Here we

(55')

_9^_

9£2
(56)
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We have introduced the following dimensionless variables:

v = ^ -— a1/3 ; e =  , E . =r a1' 3 2n0 v  no Te

tcope _  хы ре 2min0T '

a 1/3 ’  ̂ VjO1/3 ’ men'Te

(57)

One finds from (56) the conservation o f number o f quanta N, energy H and 
momentum P. The expressions for N and P are the same as usual (see (26), (27 )) 

and

- /
v2 +  v2

+  1>|еГ
9g 2 de

d£ ; g = i t  ve 
Ът

(58)

One can derive from (56) the modulational instability o f a given pump o f 
amplitude e0 and frequency

<̂ о =  - Л  - I e 0l2
ko

We find

1 = -
k2 |e0 |2

,2 -V2

2kk0 —k 2 

( k - k 0 ) 2 k2
+

- 2kk0 —k2 

(k + k 0)2ko
+  CO (59)

The maximum growth rate appears for со >  к, к >  k0, со >  к/ко (со, к, к0 are 
dimensionless):

7 = к 3/2 \  2о

1/4

(60)

Since d2 co/dk2 <  0, the sign o f the non-linear term should be positive in order 
to have a soliton type o f  solution. This means that the soliton, which we call a 
spikon, should be supersonic: v — |e|2 /(u2 — 1); u > l .  Putting
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(61)

we find

2 y 2 ( l - y 2 )

(  1 — 2y2 )'
(62)

Obviously у = 0 and у =  1 are the turning points; у = 1 at £ =  0 and у = 0 
at % ->±oo. In between there exists y 2 =  1/2 where dy/d£-> ± о®. Thus the 
spikon has steep gradients and looks more like a shock wave. Really, the 
gradients o f the electric field are not infinite if  one takes into account the 
dispersion o f the waves due to the cold plasma or the linear Landau damping on 
fast particles. But the presence o f the steep gradients, as in the case o f shocks, 
leads to the dissipation o f the spikon on thermal particles. Equation (62) can 
be simply integrated. One o f the most essential features is that the width o f the 
spikon,

is proportional to its amplitude e0 instead o f being inversely proportional to the 
amplitude in the case o f solitons described previously. This leads to three 
essential conclusions: (a) the spikons are stable for 3D perturbations, (2 ) collapse 
is impossible, and (3 ) the rate o f thermal particle heating is larger than that 
o f fast particle heating [41 ]. Indeed, collapse is a phenomenon which is due to 
a simple thing: the smaller the entity the larger the field, and the larger the field 
the larger the force pushing the plasma from the entity. When £0 ~  eo this cannot 
happen. The same is true for perturbation o f the spikon in the direction perpen
dicular to its motion. Then due to dy/d£ ~  (£ — £ i ) ~ 1/2 near to the y 2 ( £ i ) =  1/2 
point, we have Ek ~  l/k3/2, Wk ~  1/k3, and the quasilinear equation leads to an 
estimate o f the heating rate o f thermal particles:

(63)
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The rate o f Landau damping on the fast particles is

(64)

The condition for the rate o f  heating o f  thermal particles to be larger than that 
o f fast particles is expressed by the left-hand side o f  the inequalities:

while the right-hand side o f (65) is the inequality (55). The left-hand side o f (65) 
is indeed larger than the right-hand side i f  n'T' >  n0 T e, which was the starting 
point o f  the discussion.

Thus one can expect the following sequence o f events in the case o f a high- 
power input in plasma:

(a) The energy is stored in the Langmuir plasma waves;
(b ) The energy is accumulated in the condensation (k = 0 ) ;
(c )  The modulational instability develops and converts the energy towards 

higher к 's;
(d ) The energy is converted to the fast particles which are heated;
(e )  The new modulational instability develops which creates the spikons;
( f )  The spikons heat the thermal particles;
(g ) Since the thermal particles are heated faster, the condition n 'T ' >  n0Te 

should be violated and the fast particle start to receive the energy.

On average, the equipartition between the energy density in fast and thermal 
particles should be established as n 'T '=  n0 Te. For this picture to work it is 
necessary to preserve the fast particles in the system. Other applications 
o f the theory are mentioned in Ref.[41 ]: anomalous resistivity and the possi
bility o f  thermal ion heating by ion-sound turbulence; runaway electrons 
in tokamaks, and the conversion o f their energy to thermal particles; the heating 
o f thermal particles in beam-plasma interactions.

7. GENERAL THEORETICAL PROBLEMS: CONCLUDING REMARKS

7.1. General theoretical description

(1 ) The general kinetic description o f modulation interactions can be 
given in any power o f the field strength and the validity o f the expansion 
in the field strength is E2/(47rnT) 1.

(65)
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(2 ) This description o f  Langmuir waves takes the parameter
(Acocopg /к2 V je) as an arbitrary value and thus makes it possible to consider the 
so-called strong non-linear case when the non-linear frequency shifts are larger than 
the linear shift.

(3 ) The general theory shows that all the non-linéar processes, namely
modulation interactions, £ ^  £ scattering, £ s scattering and £ £ +  s decay
processes,are strongly tied together and need to be considered simultaneously.

(4 ) The kinetic description generalizes the theorem o f renormalization o f 
copg known in the frame o f the hydrodynamic description but also shows that in 
the general cáse the renormalization is not possible if the thermal motion o f 
particles is taken into account.

7.2. New non-linear entities

(1 ) The various new non-linear entities, solitons, cavitons, antisolitons, 
spikons, can exist but all o f  them need strong phase correlations or phasing o f 
waves o f self-contractions.

(2 ) The interaction o f these entities with each other and with the 
free untrapped waves can determine the non-linear plasma kinetics.

(3 ) The major problem o f these entities is the problem o f their stability 
and the influence o f additional even weak non-linearities. The instability forced 
by the neighbourhood entity can be regarded as a mechanism o f interaction 
between entities.

7.3. Statistics and turbulence

The problem o f a statistical description o f turbulence is very complicated.
We can compare it with the known problem o f hydrodynamic turbulence,which 
has been discussed for more than twenty years without essential progress. The 
equations o f hydrodynamic incompressible motion have the quadratic 
non-linearity:

vik = / vj, vc2 d i ,2 ; sÿ* = k2g (ô ÿ  -  ( 6 6 )

while the equation for Langmuir waves has cubic non-linearity:

eEk = J z f 23E\E'2E-3du2¿ (67)

Hydrodynamic and strong Langmuir turbulence have many difficulties in common 
and one can expect the development o f the problems o f the theory o f strong
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Langmuir turbulence to be discussed for many years to come. One point seems to 
be certain: the best way to start a theory is to use the procedure in Eq.(67) for 
statistical averaging [37].

7.4. Astrophysical applications

There are many astrophysical applications (see [42]). A  brief list follows:

(1 ) The problem o f cosmic ray acceleration o f the Fermi type by 
non-linear entities.

(2 ) The problem o f formation o f collisionless shock waves, where the 
modulation instability can act as a mechanism o f the dissipation in the shock 
front.

(3 ) The problem o f fast-particle creation in the front o f  the shock and 
behind it, and the X-ray emission o f the fast particles behind the shock (for solar 
flares see Ref.[43]).

(4 ) The influence o f  the magnetic field on modulational instabilities.
(5 ) Stabilization o f electron beams by modulational effects and 

application to the problem o f type-III solar radio bursts [44 — 46].
( 6 ) Generation o f  magnetic fields by modulation instabilities [42].
(7 ) The problem o f solitons in relativistic plasmas and its application to 

the problem o f pulsar emission [42, 47, 48].

In conclusion, I should like to say that although some o f the necessary 
fundamental experiments in this field have already begun [49, 50], it is obvious 
that to understand this field, which is o f great importance to the whole o f modem 
plasma physics, new fundamental experiments are needed.
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Abstract

SOME STA TISTIC A L A SPEC TS O F P A R T IA LL Y  ION IZED SY STEM S.
1. Introduction. 2. The equilibrium state. 3. States with non-equilibrium 

radiation. 3. Stationary general non-equilibrium states. 5. Concluding remark.

1. INTRODUCTION

The statistics o f the partially ionized system is even more complicated and 
involved than that o f the fully ionized system, and we can therefore only present 
in the limited space here some typical aspects which we consider important.

The statistical problem discussed is the distribution on the various particle 
states o f a partially ionized system. There are, o f course, other interesting 
statistical questions, for instance the properties o f the microfield distribution 
(see e.g. Ref. [1 ]) but space does not permit all these phenomena to be studied 
here.

2. THE EQUILIBRIUM STATE

The least complicated case — although it is by no means simple — is a 
partially ionized system in the state o f equilibrium. It has been said that this 
state might not be relevant to real plasma systems, but it is. In particular, the 
local thermodynamic equilibrium (LTE ) is o f prominent importance, for instance, in 
arc theory and in astrophysics.

To concentrate on the essentials, we shall consider the equilibrium o f the 
partially ionized hydrogen system, which consists o f electrons, protons and 
neutral hydrogen atoms only.

259
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To calculate the composition, the Helmholtz free energy can be expressed 
through the partition function Q in the Г -space in the semi-classical approximation

■fc-A f
Q = t r ( e x p ( - H / k T ) )  ^  N y N , I  e x p ( - * / k T ) d f i

- ‘ +  ‘ o '  J

( 1)
which is valid in the range 

\3/2

Na denotes the particle numbers, V the volume, T  the temperature, e the energy, 
ma the particle mass, к the Boltzmann constant, and h Planck’s constant.

Separating — naively — the energy contributions o f the three kinds o f 
particle, we have

Q =

N_ N_ N
Ф_ (T )  • cp+ (T )  • q>o (T )  °

N !N  !N  ! .
-  + о (За)

ф_ = P- ; q> = p. • о 
+  +  О О 0

Ъ/
/ 2тг ш_ k T  \

Р =
(ЗЬ)

а =  X ) g  ( i )  е х р [ -  e ( i )  /кТ  ]  
i

where «р indicates the partition function in the ¿¿-space composed in general o f 
the free-motion contribution p and an internal contribution a; e (i) is the internal 
energy and g (i) the weight factor o f the ith internal state. The well-known 
minimum requirement for the free energy using the Stirling formula results in 
the Saha equation:

/
n a. n -  9 / 27T m-  k T  \
" I T 2 = —  \  h~  • j  • exP(-x/kT)

Г\ П \ •О

(4 )

< + - « 0 ( 0)



PARTIALLY IONIZED SYSTEMS 261
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F1G.1. Schematic drawing o f  the particle states o f  the proton-electron, pair.

The failure o f this approach is already reflected in the fact that the partition 
function o f the atoms o0 is obviously divergent. The reason must be seen in the 
neglect o f  the internal interaction o f the three particle components. This con
tribution cannot be split up and therefore separation is altogether impossible.
We have to go back to the Г -space and keep in mind that the states o f  the whole 
system are all more or less affected by this interaction.

The discussion o f this problem in the present paper is not devoted to the 
mathematical aspects o f quantum-mechanical developments since they can be 
found in the literature (e.g. Refs [2 -4 ]).  Rather, it aims at a solution which 
also provides physical insight and is adapted to the concept o f ‘free’ and ‘bound’ 
particles essential to all applications.

There are bound states o f electron-ion pairs and free states o f electroh-ion 
pairs, but there are also ‘quasifree states’ . The bound states o f low quantum 
number are little affected by the electrostatic interaction with a third partner 
since the average value o f the binding energy is large compared to the interaction 
energy e2/r0, r0 being the average particle distance and e the elementary charge. 
The free particle states o f  high or average kinetic energy (e >  kT) are also little 
affected since we are well below the critical density, so that e2/r0 <  kT holds. 
However, the bound states o f high quantum number and the free states o f low
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kinetic energy -  the quasifree states -  will have no similarity to the hydrogen
like bound states or the free-particle wave functions.

In a quantum-mechanical treatment o f this problem [5] we derived the 
magnitude o f the limits for the bound states, the hydrogen-like bound states, 
the quasifree states and the free states. The lengthy calculation, which we do 
not present here, results in the following data for these limits (see also Fig. 1):

e o = - RY ; é H = e B = - O ( e 2 / r o )

(5)eF = +0(e /ro)

where e 0 is the ground state; eH the upper limit for hydrogen-like states; eB 
the upper limit for bound states; and ep the lower limit for free states.

Applying the above pair concept and the subdivision in bound, free and 
quasifree states, we can formulate the partition function in the form [6 ,7]:

Q = pN ( a o + a x + a J N

h  - e°u = / gy (t) e de , y = 0,1/2

6 У

g o = Ç Ey5( e . t i , . _ L  , St

where the limits to be introduced for e^, can be taken from

fc = - R y  ; I" = e,  = -e2/r 
O 1 O 1 о

_  (7) 
6 г = é 2 = e 2 / r o ; e 2= 0 °

N denotes here the total number o f electrons, and with that the total number o f 
ions, in the system.

The contribution o f the bound states is no longer a problem here since the 
divergence is automatically removed due to the upper limit 6 0 for the bound 
states.

The effect o f the interaction on the contribution o f the free particles to 
the partition function is well known. It can be formulated by simply replacing 
in the weight function g2>the quantity e by (e -  e2/D). Principally, the 
calculation o f this term is complicated due to a divergence that occurs for small 
separations o f electrons and ions. It follows from the quantum-mechanical
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FIG .2. The thin line gives the weight function g fe ) as calculated fo r  an isolated atom and a 

free electron-ion pair without interaction. The heavy line is the correct g fe ) curve. The 

broken line shows g fe ) as derived under the false assumption o f  a constant interaction effect 

for all free and quasifree states identical with that experienced by  the low-energy quasifree 

states.

treatment [5] that this divergence disappears since, due to quantum-mechanical 
effects, distances o f the order

r 2 < 0 (A  r w) ; e 2/ k T  ; X = h/ (2тгш k T ) ^ 2

( 8)

have to be excluded,
A  problem is presented by the quasifree states where the relation between 

the weight factor and the energy is unknown and in the greater part cannot be 
calculated by perturbation methods. As we may see from Fig. 2, it is, however, 
not difficult to interpolate between the weight function o f the fiee states and 
that o f the bound states and thus account for the contribution o f the quasifree 
states to the partition function.
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With this knowledge o f the partition function, the minimization o f the free 
energy using a discontinuous free-bound transition [6 ,7 ] yields the Saha equation 
with an important correction.

There is an effective lowering o f the ionization energy

‘ X s a h a  “  1 - 4  e ^ D  <9 >

where D denotes the Debye length o f the system.
In contrast to other investigations in the literature, it is found to be neither 

identical with the effective ionization energy o f an isolated atom in the plasma, 
which is given by

A X +. ^  e 2/ r  + e 2/D (10)A a t om ' о '

nor identical with the simple Debye term e2/D.
The reason is that for the low quasifree states the free-bound interaction 

dominates through the term e2/r0. With increasing energy, however, the free- 
bound interaction becomes negligible in comparison with the Debye term o f 
the free-free interaction. Since all quasifree and free states contribute to the 
Saha equation, it is evident that

e V D  < A * s a h a  < e V r „  0 1 >

holds. This situation is demonstrated in Fig. 2. Here we can see why the term 
e2/r0 is not the proper correction term. The correction 0.4 e2/D to the usual 
Debye term as given in Eq. (9 ) is stronger than the correction found from 
classical cluster expansions. The reasons are the free-bound definition, the 
accounting for the free-bound interaction, quantum-mechanical effects, and 
strong correlations below the true free limit. It is o f course clear that, owing to 
the uncertainty ô f the quasifree states, accuracies o f order 1 % as claimed in thé 
literature cannot be substantiated.

We further point out that the plasma composition is also affected through 
the limitation o f the single-particle partition function o0. For temperatures low 
enough this effect is, o f  course, negligible. As it becomes important with 
increasing temperature, its limitation is governed by e2/r0 and not by e2/D.

3. STATES WITH NON-EQUILIBRIUM RAD IATIO N

Under this heading we consider systems which deviate from equilibrium owing 
to deviations o f  the radiation from equilibrium. In contrast, all particle compo
nents are assumed to be in a Maxwell distribution -  possibly with different 
temperatures (T _ , T + , T 0). Within these limits, various situations are possible,
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depending on the parameters o f the system and on the characteristics o f  the 
non-equilibrium radiation distribution.

It is not difficult to describe the corresponding stationary states if one 
emphasizes the assumption o f detailed balancing, on one hand, and negligible 
cumulative effects on the other. Balancing the collision and photoprocesses 
connecting the ground state with the ionized state results in the formula:

n v+ 1  n -  
n

n -  Cv  +  P v  

n-  Cv+  1 + P v + 1

(12)

Here it is instructive to consider systems more general than the hydrogen system 
o f the previous section and the index v denotes the degree o f ionization accord
ingly. The terms and C¡;+ l describe, respectively, collisional ionization and 
three-body recombination, whereas and P~ + ! denote, respectively, photo
ionization and radiative recombination from and into the state v. n_ denotes 
the electron density.

The problem o f this formula is the calculation o f the terms in the denominator. 
It now becomes clear why the assumption o f equilibrium for the particle compo
nents is so crucial for this class o f system.. Knowing the electrons are Maxwell- 
distributed with a temperature T _ ( f j  ), we can now remove these terms in the 
denominator by introducing the detailed balances for the equilibrium state, 
looking at collisional and photo effects separately. In this way, we express the 
three-body recombination and radiative recombination term through the 
collisional ionization and photo-ionization terms o f the equilibrium, arriving at

n , . n 
v + 1 -

n C+ ( f ¡ !  )  + P + ( I  )
-  v 4 T_' v ш

n C+ ( f ^  )  + P + (B T -)— \) 4 Ф '  M / a \ '

(13)

where I w is the radiation distribution and B^- denotes the Planck distribution 
at temperature T_. The index Sa refers to the Saha value. The relation (13) is 
the generalization o f the Saha formula to systems with the radiation not in 
equilibrium with the electron Maxwell distribution.

Further progress can only be made i f  the evaluation o f the collisional 
and photo-ionization processes C¿, P£ is advanced. This is not the place to go 
into these relatively straightforward details. We therefore refer to a paper by 
Elwert [ 8 ], where these coefficients are evaluated using a simplified form o f 
the collision ionization cross-section and, for the photo-ionization coefficient,
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a diluted Planck distribution and a cross-section known from quantum- 
mechanical calculations. One thus arrives at the general formula:

V2B x_ x -  x#
/ \Sa 1 + К — ---- e G (x ,x Jn.. , « n /n.., , n \ An_ x # -  *

V + 1  -  I V + 1

‘ T
-  X

1 +  A i r

(14)

with the abbreviations

T*
x _  = Xv / k T _  ; x * = Xv / k T ,  ; 1щ = к Вш

G ( x _ , x J  ^  (1 -  ± )  / (1 -  \)

a = qv (8xv /  ^  (15)

В = qT c ( Çv x^ lñv x p / a 3 7T2 3 ’/г 

q T = (8тг/3) ( е 2/шс2) 2

where qT is the Thompson cross-section, с the velocity o f light, a the Bohr radius, 
Çv the number and nv the principal quantum number o f equivalent electrons for 
the photo process, к the dilution factor and T^ the characteristic temperature 
o f the Planck distribution.

Let us introduce a critical density through the relation

x_/2 x _ - x *
n ( T _ , T # / T J  = f  ---- : e G (x ,x ) (16)

С ¿\ X „ “

Then we see from Eq. ( 14) that collisional or photo processes dominate the 
ionization or the recombination mechanism, depending on whether the >  or 
the <  sign holds, in the relations:

n_ £ K nc (T_ t T#/ T J  ; n_ \ nc (Т_ , 1) (17)
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FIG.3. Critical density nc which is suitable to separate the regions o f  dominance o f  collisional 
and radiative effects in stationary systems with a diluted Planck radiation. T_ is the electron 

temperature and Tt the temperature o f  the diluted Planck distribution o f  the radiation.

The critical electron density nc as a function o f the electron temperature T_ 
and the ratio o f radiation temperature and electron temperature (T  /T_) are 
shown in Fig. 3.

Equation (14),owing to the parameters n_, T_, T* and the dilution factor к, 
still describes a manifoldness o f systems. Two special ones have drawn particular 
attention:

(a) The Corona case assumes that the radiation density is so small that photo
ionization is negligible in comparison with electron collision ionization, and 
the electron density is still so small that three-body recombination is negli
gible in comparison with radiative recombination.

(b ) The Eddington case assumes the electron density so small that ionization 
is dominated by photo-ionization and three-body recombination by 
radiative recombination.

With these specifications it is not difficult to find the Corona formula and the 
Eddington formula from the general formalism (14).

In the Corona case we have

n (T  , 1) »  n »  к n (T  , T „ / T  ) c  — — С (18)
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and with that the relation

» S a  У2
n v + 1 n -  / n  i + 1  n_\ A n  x /2

I
П V n vi / B G ( x , x )

T
(19)

, S a( \üä
’ П. Л  . n-

nv A, nc (T- ' 1
We see from (18) and (19) that the degree o f ionization in the Corona range is 
necessarily smaller than that o f the degree o f ionization in the equilibrium state 
Sa. We also see that in the Corona the degree o f ionization n+ /n0 is independent 
o f the electron density.

In the Eddington case we have

n (T  , 1) »  n ; к n (T  , T / T ) »  n (20)
С  “  “  С  “  *  ”  —

and find the relation

n _  n /п  ^  n \Sa x  x _ - x * G ( x  , x  )
v + 1  -  _  I v + 1  - 1  . K _ l  e  -  *

n v V n,, / x .  G ( x _ , x _ )

( 21)

Obviously, this relation applies to plasmas o f  low electron density and high 
radiation density. Observe that, in spite o f the dominant influence o f the 
radiation, the formula still depends on the electron temperature T_ via the 
radiative recombination mechanism. For T_ =  T* we find the Saha formula o f 
the equilibrium reduced with the dilution factor.

In closing, we note that two other cases — complementary to the 
Corona and Eddington formulas — could be considered:

(c ) The collision processes dominate the photo processes.

(d ) Photo-ionization dominates electron collision ionization and three-body 
recombination dominates radiative recombination.

Case ( с):

n »  n (T  , 1 )  ; n »  к n (T  , T „ / T  ) (22)~ с -  -  с — »  —
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FIG.4. Examples o f  the validity ranges o f  the Saha, Corona and Eddington formulas in 
hydrogen (H) fo r  different dilution factors K, and ratios o f  the radiation temperature Tt  and 
electron temperature T_ fn denotes electron density).

is not interesting since, trivially, it will reproduce the Saha formalism o f 
equilibrium because the only non-equilibrium effect -  the radiation -  is 
assumed to be negligible.

Case (d ):

к n c (T _  , T# /Т  J  »  n _  »  n c (T _  , 1 ) (23)

is hardly o f practical interest.
Figure 4 shows examples for the applicability o f various models.
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The systems treated in the preceding section allowed a simple approach for 
two reasons: we assumed the particle components to be Maxwellian-distributed 
and neglected the influence o f excited states. In this section we consider the 
more general type where there are deviations from the Maxwellian distribution 
due to inhomogeneity in the configuration space, field effects and contributions 
o f the excited states o f the atom.

First, we consider systems homogeneous in the configuration space but 
allow for the presence o f an electric field. In these circumstances, the distri
bution function o f  the electrons is governed by the kinetic equation:

4. STATIO N AR Y GENERAL NON-EQUILIBRIUM STATES

-  E 
m —

where the term (Öf/St)£ denotes the effect on the electron distribution function 
through collisions, also including the internal levels o f the atom. These terms 
naturally depend on the occupation number nk o f the kth state and therefore 
we have to calculate this quantity from a corresponding set o f equations:

J n- <  + pk +L  (n- c k + p^  +I X
k/i i< к 

-  “ v + 1 ~ k  , v + 1

+  n  n  - P,  + Y > n .  ( n  C k +  P k ) + V *  n .  E k =  О-  v+1 k , v + 1  /  j  l - i  i '  /  j  i  i
k ^ i  i> k

(25)

In these equations Ck denotes collisional ionization, Ck collisional excitation 
(i >  k) or de-excitation (i <  k), Pk photo-ionization, Pk photo-absorption (i >  k) 
or induced emission (i <  k); Ck v + j describes three-body recombination,
Pk у + 1 radiative recombination and Ek spontaneous emissions. It is clear that 
the coefficients C£, Cj,, C f  and Ck „ + j depend on the electron distribution f, 
and with that couple the set o f equations (25) with Eq. (24). Moreover, the 
coefficients Pk , Pk , P^ and Pkii,+  \ depend on the radiation distribution I(co), 
which is either a given quantity or must be calculated consistently. The latter 
would then require the radiation transport equation as an additional equation.

In Eq. (24) we introduce in the velocity space spherical polar co-ordinates 
with the axes along the field using p =  cosö, в being the polar angle. A t the
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same time, we separate the collision term into the two contributions o f  the 
electron-electron interaction and the electron interaction with the heavy 
particles. This is sensible since for the electron-electron interaction an expansion 
is advised which is different from that used for the electron heavy-particle inter
action. This transformation and separation results in

e 3f 
m  ̂ Э v + (1

3f
Sy

ô f
’f i t £ ( « ) .

(26)

with

f a (vl ) f (v‘ ,y ' ) u' aa (u1)
dv' dv—a —
dv dv—a

f a (va) f (v,y)u a(u)
■]

d 2Çl (27)

The sum over a covers all heavy-particle components and all corresponding 
internal states. Moreover, Eq. (27) describes elastic and inelastic collisions. 

To achieve further progress one expands f  in Legendre polynomials:

f  = 1 2  p v (m) f V ( v )  (28)
v

and applies the Lorentz approximation m ma . Further, we restrict ourselves 
to moderate ionizations for which the electron-electron collision term can be 
reduced to its isotropic part. With this we find for the zero and first-order term 
o f (28 ) the equations

I Û  {v2f '} = + ^  (тг)а <29a)
a

e  E « 1
ш dv E№). (29b)
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The evaluation o f the elastic-heavy-particle collision contributions yields in the 
Lorentz approximation

( « ) = -  v ( v )  f 1 ( v )  (30a)
e 1

/ М ! Л  = J _  <L im  3 ( v )  ( f °  + — -  i  (30b)
\ &t / e l  v  d v  M i v ' \ mv d v  J I

with the momentum transfer collision frequency

v i ( v )  = / f о dXo /  (1  "  c o s  0 ) o ( v , 6 ) d z.Q (31)

Since under the conditions specified (kT_ the elastic effect on f 1 

dominates the corresponding inelastic influence, it is sufficient to keep the 
inelastic effect only in Eq. (29b). With this, Eqs (29) and (30) result in

1 d i m  3 , , , 0
^  d ^ M V v . ( v ) f °

(
1 e 2 E 2
3 ЩТ Ч У  +  V 1 ( v ) M

n , a

v
d f 0 

d v

= О (32)

which couples f° with (25) via (S fV ô t )^ a -

In the case where inelastic collisions and electron-electron interaction are 
negligible, the solution is straightforward and yields the Davydov distribution:

f  = С e x p
f  _______m v'J kT  + ^  -

d v
E 2

(33)

о 3 m 2 ( v 1)

which for constant vx is a Maxwell distribution with an electron temperature:
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and for a constant mean free path with v ,(v ) ~  v yields the Druyvesteyn 

distribution:

f  =  С e x p
- M '

e E X ( 4 M / 3m) y2

)■}
(35)

which with increasing velocity drops much faster than the Maxwell distribution.
The effect o f the electron interaction can be formulated via the Fokker- 

Planck formalism and gives

/ f i f  \ J _  A
\<StJ  v 2 d v

2
V  V a ( v )  f 0 ( v )  + b  ( v )  v

d f 0 

d v

with v_ =  n_vq_ (q_ = Coulomb cross-section) and the abbreviations 

v
4 7T

( v )  = J  ( v '  ) 2 f 0 ( v ‘ ) d v '

and

(36)

(37)

Í  r
Ь ( v )  = l ^ 2 j  ( V ' )4 f 0  (V ' ) d v ' + V J  V ' f0 (V ’ ) d v '

~  \  О  V

(38)

Including (36) in Eq. (33) results in the solution 

i

f 0 = с e x p / m v' - t - a ( v ' )  M —  ( v 1 ) d v

M e ' E ‘
kT  + Ц , v + v  ' b ( v '  ) • M —  ( v ' ) 1

о 3 m2 Vj  ( v 1 ) '  Vj  J

(39)

instead o f the Davydov distribution. The ‘Maxwellizing influence’ o f the 
electron interaction is demonstrated in Fig. 5.

In the evaluation o f Eq.(32) with (36) presented in Fig. 5 a fundamental 
simplification was introduced since we used n_ as an independent parameter. 
Actually, it would be necessary to calculate n_ from the set o f equations (32) 
and (36) consistently with the set o f equations (25). This would then involve 
the other internal states o f the atom and the corresponding inelastic processes.
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F IG .5. The transition from  a Druyvesteyn distribution to a Maxwellian with increasing ratio 

o f  the electron density n _an d  ground-state density n0. A  constant collision cross-section Ch 

is assumed. E  denotes the electric field in V ■ cm, and f  the distribution function o f  the 

electron energy e.

The excited states and the inelastic phenomena are the main feature still 
missing in our treatment. It requires the simultaneous solution o f the set o f 
equations (25), (32) and (36 ),where we recall that the coefficients in (25) are 
also dependent on the distribution function f  found from (32) and (36).

In the formulation o f the inelastic contributions, we proceed in a similar 
way as for elastic collisions, neglecting within the Lorentz approximation the 
term m/M altogether, since there is now an effective energy exchange via the 
inelastic collisions. In that approximation, we have then for the zero-order 
(u =  0 ) and first-order (v  =  1) inelastic contribution

Here the indices i, j refer to the various internal states; f¡(v ¡) is the distribution 
function o f the excited states (i); v¡j denotes the electron velocity before the 
collision, and v that after the collision. The energy law relates them through

. v
f v (v. .)v. . о . . (v. .)/cos 0 >

i j  i j  i j  i j  I J

-  f v (v) v  (v) f .  (V.) d 3v. d 2tt (40)

v r  .
1 J

(41)
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We want to rewrite this double sum, in which each pair i, j appears twice, 
as a sum in which each transition occurs only in one combination (i <  j). This 
requires a straightforward rearrangement and an application o f the detailed 
balancing. The result is:

The symbols are: G is gain; L is loss; 1,11 are collisions o f the first and second 
kind; v =  1 ;2. The quantities Q-j are defined through

gj is the weight factor o f the level i.
As one would expect, each term (i <  j )  o f this sum due to the reduction 

now consists o f four terms, and it is not difficult to interpret these. To make 
it easier, we have indicated in the formula the type o f collision (first or second 
kind, I or II ) and the type o f process (gain or loss, G or L), where we emphasize 
that these latter expressions refer to the electron distribution function and not 
to the levels. The first term (G I) describes gain through transitions from Vj to 
v <  Vj; the second term (L I )  describes loss due to transitions from v to Vÿ <  v. 
The third term (G II) represents gain due to collisions increasing the velocity 
from Vjj to v. Finally, the fourth term (L II ) describes collisions that change the 
velocity from v to v¡j >  v.

A  look at Eqs (25, (32), (36) and (42) shows that this problem certainly 
needs simplification. An extreme reduction can be reached if the equations 
describing the distribution function are simply replaced by the assumption o f a 
Maxwellian distribution. Another crude approximation allows for only one 
effective internal state to describe the structure o f the atom. More sophisticated 
is the approach to neglect in the electron balance gains o f the first kind and 
losses o f the second kind in comparison with the complementary processes. This

( G I ) ( L I )

v  Q? (v) f v (V)

+

( G I I ) ( L I I )

(42)

(43)
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T_/103 к

FIG . 6. Demonstration o f  the deviations from  the equilibrium density due to radiation 

escape, diffusive effects and deviations from the Maxwell distribution. n0 is the ground- 
state density, T0 the heavy-particle temperature, T _ the electron temperature, n_ the 

electron density, A 10 the resonance radiation escape factor, A ¡ j  the corresponding escape 

factor for all other transitions, l¡ the diffusion lengths, Zi and l_ the diffusion lengths 

specifically for resonance states and electrons, respectively.

e/e,

FIG . 7. Deviations o f  the electron distribution f  from  the Maxwell distribution /M for three 

typical states A, В  and C, indicated in Fig. 6. 6j is the energy o f  the resonance level.

assumption is justified i f  the electron distribution function decreases fast enough 
with increasing energy and if the average electron energy kT_ is small in 
comparison with the resonance level energy

There is much information about approximate solutions o f this kind in the 
literature (e.g. [9—16]). We present here results that have been calculated recently 
for a caesium plasma, accounting analytically by a recursion method for deviations 
from the Maxwell distribution up to energies well above the ionization energy.
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We have included in the analysis 41 atomic energy levels, 25 o f which are assumed 
to be in a non-equilibrium state. We have also allowed for diffusion o f excitation 
states and ambipolar diffusion, total radiation escape for higher levels, and partial 
radiation escape for the resonance level [17]. In this model, the deviation o f the 
electron distribution is dominated by the imbalance o f the resonance level and 
governed by gains o f the second kind and losses o f the first kind. The results o f 
this evaluation, which starts from the basis described above but requires a lot 
o f additional analysis that can be found in the References, are shown in Figs 
6  and 7, which are quite instructive.

Figure 6  presents various curves o f the electron density n_ as a function o f 
the electron temperature T_ for a given neutral ground-state density n0 and 
heavy-particle temperature T 0, a constant resonant radiation loss factor A 10, 
total radiation loss for all non-resonance transitions and no diffusion loss for 
all excited states except the resonance state. The three curves, I, II and III, refer 
to different diffusion lengths o f electrons 1_ and resonance state h . The 
deviation from the equilibrium value is strong everywhere. The deviations o f 
the solutions with the assumption o f Maxwell distribution from those with a 
consistent solution o f  the electron distribution function is noticeable in all 
cases but very strong for small values o f electron and resonance state diffusion. 
The n_ (T _ ) functions are multivalued above certain critical values o f the 
electron temperature and the plasma loss parameters. This ambiguity can be 
explained by the cumulative ionization mechanism, as all the features o f this 
figure are open to physical interpretation. However, since space is limited and 
the problem relatively simple, we can leave this task to the reader.

Figure 7 shows the deviations from the Maxwellian electron distribution 
for the points A, В and С indicated in Fig. 6 . The deviations are obviously 
quite strong and show a stepwise character. This feature can be understood 
from the fact that the deviations are dominated by gain o f collisions o f  the 
second kind and loss o f the first kind which both couple to the lower energies. 
Moreover, it is essential that only the resonance level contributes decisively to 
the deviation from the Maxwell distribution.

5. CONCLUDING REM ARK

From the preceding section, which presents as an example one o f  the 
advanced descriptions o f  a plasma in a stationary non-equilibrium state, it should 
be obvious that a great distance has still to be covered in this field. The 
description o f the diffusion processes in the configuration space through 
diffusion lengths is rather crude. Field effects which would cause effects 
similar to those demonstrated in the distributions o f Fig. 5 are neglected. The 
assumption o f moderate ionization degree and low plasma temperatures 
(kT_ <  6 j )  is restricting. Its relaxation would complicate the analysis extrem ely.
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FIG . 8. Level scheme o f  caesium. Grouping o f  the levels into an effective scheme is indicated 

according to Ref. [17].

Finally, and most important, the assumptions about the radiation are not too 
realistic and, in general, for a proper account o f the radiation, it would be 
necessary to add the transport equation o f radiation to the system o f equations 
(25), (32), (36) and (42).

There is little hope for a general solution including all these effects if  some 
kind o f a basic simplification is not found. One such possibility may be the 
replacement o f the true scheme o f the internal states by a simpler effective one, 
as has been tried in a recent publication [17], where it is claimed that for most 
applications it is possible to replace the complicated scheme o f the caesium atom 
by a small number o f effective levels.as indicated in Fig. 8 .

I f  this simplification or a similar one is not possible, then I am afraid we 
shall probably have no choice but to try for specific results on a computer with 
programs which, as our experience shows,, will be frighteningly extensive and 
expensive.
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Abstract

A T H E O R Y  F O R  C O RRELA TIO N S IN STRO N G LY TU RBU LEN T PLASM AS.
A kinetic theory for binary correlations in turbulent plasmas is presented which is an 

extension of the Dupree-Weinstock m ethod. It is shown that the effects associated with 
“ clumps” can be obtained as a lowest approxim ation o f  this general theory.

INTRODUCTION

Let us begin with a remark on ‘collisionless’ plasma turbulence. Turbulence 
in a high-temperature low-density plasma appears to be very different from fluid 
turbulence:

(a) In neutral fluid, indeed, the energy is fed into the system in the form 
o f macroscopic eddies. These eddies are transformed non-linearly into smaller 
ones and, for wavelengths o f the order o f the mean free path, the energy is 
dissipated by viscosity, thus by particle collisions.

(b ) In hot fusion plasmas the mean free path is extremely long. The 
collective motions are due to the long-range interactions and fields, but the 
spatial range o f the waves remains much smaller than the mean free path. The 
particle collisions thus play a minor role.

281
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An essential problem o f plasma turbulence is to understand the occurrence o f  a 

new type o f  dissipative mechanism o f  evolution in the absence o f  the binary 

collisions which explain irreversibility in neutral fluids or cold plasmas. In a 
so-called collisionless plasma the collective excitations o f the turbulence appear 
spontaneously through the interactions (wave-wave and wave-particle interactions). 
The problem is to describe the generation mechanism for particle correlations in 
the absence o f true particle collisions.

About clumps, Kadomtsev and Pogutse on one hand [1] and Dupree on the 
other [2—4], during their stay at the ICTP, Trieste, in 1970, suggested that 
particle correlations in a turbulent plasma have a peculiar structure leading to 
a kind o f ‘granulation’ o f the fluid in phase space. It is said that the turbulent 
plasma consists o f ‘ clumps’ treated as true macroparticles. These objects could 
explain the anomalous transport processes observed in plasmas.

To understand the formation o f clumps, it is necessary to explain how the 
correlations o f particles which are close together in phase space can be enhanced, 
and how the lifetime o f these correlations can be significantly dilated as a result 
o f the turbulence. Following a very important comment o f Engelmann and 
Morrone [5], these clump effects can only be explained if one can demonstrate 
the existence o f  a mechanism by which the correlations are continuously generated 

from the average one-particle distribution function (D F ) through the plasma 

interactions.
In a collisional fluid this mechanism is provided by the particle collisions.

In a kinetic regime there exists a general Bogolyubov relation which expresses 
binary correlations as a functional o f the one-particle DF.

To understand the formation o f clumps in a hot plasma it is thus necessary 
to demonstrate the existence o f a similar relation which holds even in the absence 
o f true collisions.

1. KINETIC THEORY FOR THE ONE-PARTICLE DISTRIBUTION FUNCTION

A t the last Kiev Conference [6 , 7] we presented a generalization o f the 
Dupree-Weinstock method [8 ,9 ]. We start from the Klimontovich equation for 
the exact (microscopic) DF

( 1.1)

with

N

(1 .2 )

i= 1



L [ = -  V  -  ~  î i ( x ,  t ) - ~  ̂ (1-3)
m 3v

The electric field is to be determined afterwards in terms o f f x [10].
We take the ensemble average o f this equation:

at f = L f + < L ' f '>  (1.4)

and solve formally the fluctuating equation for f'. One obtains in this way the 
exact master equation o f Weinstock:
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dt f , (t) = L , (t ) f  x (t ) + J dt'M n (t ,t ')  f , ( t ' )  + Sl(t, t0) (1.5)

This equation is non-Markovian, and depends on the initial fluctuation f '( t 0) 
through the source term s^ We have proved that one can also write this equation 
as [7]

3t fj (t ) = [L , (t )  + G „ ( t ) ]  f , ( t )  + S ^ t , t0) (1.6 )

in terms o f the turbulent collision operator G n . Contrary to Sj, the source term 
Si does not vanish for f ' ( t 0) = 0. This source term is proved to vanish for a 
general class o f initial fluctuations given by

f'1(to) = Œ1(to) f , ( t 0) (1.7)

.The remarkable property o f (1.7) is that this functional relation, giving the 
fluctuations in term o f f j ,  is conserved by exact motion. The creation operator 
is such that the turbulent collision operator is given by

G n (t ) = (L 'j(t ) <T, ( t ) > (1.8)

In simple cases, the latter reduces to a generalized diffusion operator in velocity 
space. .

A  kinetic regime o f a developed plasma turbulence is defined as being 
independent o f the precise value o f the initial fluctuation. This regime is thus 
obtained when ( 1.7) holds: Sj = 0. We thus obtain the general kinetic equation [7] :

3t f 1(t ) = [L 1(t ) + G 11(t ) ] f i ( t ) (1.9)
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where the turbulent collision operator takes non-Markovian effects into account:

by means o f the one-particle turbulent propagator V,. This propagator takes into 
account the effect o f the turbulence on particle trajectories, and yields to the 
usual effects o f resonance broadening and frequency shift.

2. ICHIM ARU ’S TH EO RY FOR B IN AR Y CORRELATIONS

The theory developed by Ichimaru [11 ] for strongly correlated plasma starts 
from the BBGKY hierarchy:

including the ‘discrete’ terms L and B. Let us recall that the usual kinetic equations 
are obtained by only considering in ( 2 .2 ) the free flow term along with:

OO

dr < L i (t ) A  j ( t , t -  r) L i (t -  r)> V j (t -  r, t) (1.10)

0

(2.1)

dtël2 - (L l + L 2 ) g i 2 + ( l + P l 2)  d3 0 13 [ fl g23 + S123]I I
BLG TRIPLE

(2 .2)

L В

term L
terms L and В 
terms L and BLG

for the Landau equation
for the Boltzmann equation
for the Balescu-Lenard-Guernsey equation

and by neglecting triple correlations (TC).

The characteristic feature o f Ichimaru’s approach is the crucial role o f  the TC. 
For plasma turbulence he introduced, without too strong a justification, the
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Kirkwood superposition approximation relating TCs to the lower binary correla
tions. Assuming the existence o f a velocity-independent non-equilibrium radial 
distribution function, he used this spatial part o f binary correlations to 
renormalize the microscopic field in the hierarchy (L , в, w => L *, 0 * ,- »* ) .  This 
represents an effect o f strong turbulence in modifying the interactions by a form 
factor. He obtains [11]

This equation has the same form as the equation leading to the BLG equátion 
in the collisional regime. The source term,

however, contains a non-linear contribution from TCs.
In this approximate description, the turbulence thus introduces two effects:

(a) modification o f the interactions, and (b ) non-linear modification o f the 
source term. The latter remains significant even in the limit o f rare collisions 
(L  -»■ 0), provided the level o f turbulence is strong enough.

We shall see how this renormalization and non-linear source term can be 
obtained in a general kinetic formulation.

3. KINETIC THEORY FOR B IN AR Y CORRELATIONS

The generalized Dupree-Weinstock method can be extended to the study 
o f two-particle functions [12]. We start from the two-particle Klimontovich 
equation:

d3 в 13 fj g23 + H 12 (2.3)

H 12 = ( l + P 12) 0 î2 f , f 2 + / d3 6*3 g 12g23/f2 (2.4)

3t f  x -  [L i + L 2] f  i f 2 (3.1)

and define the average two-particle function:

(3.2)

where the correlation c12 includes the usual correlation g 12 along with the 
‘self-correlation’ :



286 MISGUICH and BALESCU

g SE L F  = § ( x j -  x2) 6 (v I - v 2) f 1 (3.4)

The fluctuating two-particle function is given by the difference:

f l 2 = f i f î - m 12 (3.5)

By using similar methods, we derive an exact equation for the average two- 
particle function [ 1 2 ]:

3t m 12( t )=  [L , ( t )  + L 2(t ) + ^ 12(t )] m 12(t ) + S12( t , t 0) (3.6)

in terms o f a new turbulent collision operator:

0 î2 _ G u + G 22 + G 12 + G 21 +<S^i2 (3.7)

and o f a source term S12 which depends on the initial fluctuation f']2(t0) through 
the difference

f  12(^0) _  ® n ( t o )  m 12(to)

This source term is thus vanishing when the fluctuation satisfies

fn ( t 0) =Œi2(t0) m 12(t0) (3.8)

In the kinetic regime, S12 = 0 and we obtain the general kinetic equation [12] for 

the average two-particle function:

atm12(t) = [LJ+ L2+ ̂ i2(t)]m12(t) (3.9)
The corresponding turbulent propagator is denoted by V 12, which takes into 
account the trajectory correlations between two electrons, due to the turbulent 
fields: V 12 Ф  V j V 2. This property is due to the interaction Liouvillian in
the following decomposition:

Lj, + L 2 + 0^12 = L [ + G n + L 2+ G22 + G i2+ G 2i+ á ^ i2 (3.10)

12

From the kinetic equations for m12 and fj or f2 we easily derive the 
following kinetic equation for binary correlation [ 1 2 ]:

Cj2 (t) = [L i+  L2+ G lt + G 22 + {G t2 + G21 12}] С12

+{G i2  + G 21 + ¿ ^ 12^ 1 X2 (3.11)
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The essential feature o f this result is the occurrence o f the source term. This 
term is reponsible for the generation o f correlations from the one-particle DF.

By using Poisson’s equation and comparing with the BBGKY hierarchy, one 
can prove that the underlined terms in (3.11) correspond to the contribution o f 
TCs (along with the discrete Boltzmann term). The first part o f the source term 
(G 12 + G2i )  fi f 2 can be proved to correspond to the BLG term (along with the 
discrete Landau term) and this term thus corresponds to the usual source term o f 
the kinetic theory o f plasmas. The contribution o f TCs in the source term

f ! f 2) is, however, essential in strong turbulence where discrete terms are 
negligible [11]. Let us remember that this last feature has also been found in 
Ichimaru’s description, where the ‘most non-linear’ part o f TCs acts as a source 
for binary correlations.

In the kinetic regime, binary correlations do not depend on initial corre
lations, and the solution o f Eq.(3.11) is given by:

c 12( t )=  J  d r V 12( t , t - r ) [ G 12+ G 21+.S^2 ] V 1Va( t - r , t ) f 1 ( t ) f a(t)

0

- x 12(t ) f i ( t )  f2 (t ) (3.12)

We thus obtain a functional relation between correlations and one-particle DF, 
which is similar to the Bogolyubov relation that holds in the kinetic stage o f 
collisional systems. This result describes the creation mechanism o f  binary 

correlations through the internal interactions o f  the turbulent plasma. This is the 
result we were looking for.

Here V 12 is the binary propagator associated with m 12, which is different 
from the factorized propagator associated with fj f2: this effect o f  trajectory 

correlations is the basic mechanism for the existence o f  clumps.
When we substitute this solution (3.12) in the first hierarchy equation, we 

obtain a closed non-linear equation for fj [ 1 2 ]:

3t

This equation has the same structure as the BLG equation, but for strong turbu
lence it has a very different physical content. It can be proved that this general 
kinetic equation reduces to the BLG equation in the limit o f vanishing TCs. 
Generalized BLG equations o f this form were obtained previously by Hatori [13], 
Dupree [14] and Pelletier and Pomot [15].

■
f i ( t )  = L a( t ) f , ( t ) +  / d2 $ 12x 12(t ) f j ( t ) f 2 (t )
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Let us see how these general results can be evaluated explicitly in a rather 
simple approximation called QL 2. This approximation represents the first step 
beyond the renormalized quasilinear (R Q L ) description. It takes into account, 
to the lowest order, trajectory correlations; thus the property V 12 Ф  V\ V2. The 
binary propagator can be calculated as [16]

V 12 (t, t - т )  = t -  t )  V, (t, t -  r) V 2 (t, t -  r) (4.1)

in terms o f a trajectory correlator and the renormalized one-particle turbulent 
propagators. When acting on a function o f space, this operator V 12 introduces

4. ‘ANOM ALOUS’ CORRELATIONS AND CLUMPS

— \ QL2 —* —>
V 12( t , t - r )  e x p ( ik - r )  = ( e x p  [ ik - r  ( t - т ) ] ) .  ==*-exp [ik -<r (t-T )> ]

X e x p H k k : ( ? ( t - T ) 7 ( t - T ) ) ]  (4.2)

a cumulant expansion in terms o f fluctuating particle trajectories. The QL 2 
approximation is responsible for the truncation after the second cumulant. All 
this is very similar to what happens in the usual RQL approximation. Our 
formalism makes the connection between the propagator calculations and the 
particle trajectory calculations.

The present Q L 2 approximation goes, however, beyond the RQL or Dupree-

Weinstock description, because <r r > is modified here by trajectory correlations: 

< r ^ = ( l T 1x 1>+ (x 2 x2> -  [(-Xj>c2> + <jT2 i >] (4.3)

Because o f the trajectory correlator .pf; the bracket is different from zero. It 
can even be proved that this bracket is positive for neighbouring particles in phase 
space, so that trajectory correlations actually reduce the relative diffusion

{ r 2 ) o f these particles. This is the physical mechanism responsible for ‘clump’ 
effects.

The binary correlations can be evaluated in this QL 2 approximation, which 
takes into account trajectory correlations beside the usual Dupree-Weinstock 
renormalization. The form o f the result is similar to Dupree’s result [17]:
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Here d-> is the Fourier transform o f a diffusion coefficient which depends on 
—> к —>
r, v¡ and v2, while t j  represents the correlation lifetime. Using the previous 
result for the trajectory correlator, this time can be written:

t j -  (r, V], v2) = J  d rexp (- ik -r ) exp [ ik -< r (t - r )> ]

0

X exp [ - i k £ :  <r^t~r) r ( t - r )> ]  (4.5)

Its calculation is thus reduced to the solution o f a relative diffusion problem, 
thus to the study o f the average relative distance, and the dispersion due to the 
fluctuating fields. By evaluating these quantities we find that in the RQL approxi
mation (which does not contain clump effects)

< F 2 ( t -T )> RQ L = \ \ \  (4.6)

where X 0 is the lengthscale o f the turbulent spectrum and t 0 the corresponding 
time ( X 0/ t 0 is the trapping velocity). The t 3 behaviour is well known and is related 
to the usual Dupree damping which produces resonance broadening. In this 
approximation, the correlation lifetime is o f the order o f r0:

t *Q l  «  t 0 (4.7)
к

On the other hand, i f  we now take the trajectory correlations into account, we 
find that for small values o f the initial distance r and the initial velocity 
difference g,

< r2 ( t - r ) > Q L 2  = 7 (г2 + тт; t V ) ( - )  (4.8)
6 10 \rn/

This term goes to zero for weak r and g, and we find an important reduction o f  

relative diffusion. This explains why particles tend to move together and to form 
a so-called ‘clump’ .

Following Dupree [2] the clump lifetime can be defined as the time neces
sary for two particles, initially separated by r and g, to diffuse up to a dispersion 
equal to X0 :

<r"2(t + Tcl)> = \ \  , = *Tci(r ,g ) (4.9)
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From this relation one can evaluate the curves o f constant rcl in (r,g ) space. In 
one dimension we find F ig .l. The physical meaning o f these curves is as follows. 
A ll the points located on a curve with a given в = t ci/t0 represent the initial 
relative distance (in phase space) o f two particles which will diffuse over a distance 
X0 in a time в r 0. Thus, all the particles located in phase space within an ellipse 
parametrized by в are considered as belonging to the same ‘clump’ , with lifetime 
rcl(r, g) = t 0 0  (r, g). The clump is said to be destroyed after that time. As diffusion 
is decreased by the effects o f trajectory correlations, the particles are found to 
‘move together’ for a long time. This is why Dupree calls such a set o f particles a 
‘macroparticle’ . We think that the essence o f a clump is the enhanced correlation 
between particles; this is not quite equivalent to a discrete macroparticle 
description.
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e  = 5.¿29

X=knr

FIG.3. Phase-space contours o f  ID  clump lifetime, from Dupree’s formula.

There exists o f course a validity domain for this result (Fig.2). We have an 
upper and a lower bound for the distance o f the particles in phase space (the 
particles have to be close to each other, but not too near in order to avoid 

collisional repulsions). This gives an upper and a lower bound for the value o f the 
clump lifetime, as function o f the turbulent lengthscale n =  X0 A d  •

The dimension o f  a clump in phase space, for a given clump lifetime, is given 
by the extension o f the corresponding ellipse. Exactly like a Debye sphere, a 
clump cannot be localized in the physical space: around each particle one can 
draw a Debye sphere and a clump for each 0. In physical space a clump в has a 
maximum spatial extension L (0 ), corresponding to the maximum r o f the ellipse, 
but the clump is composed only o f the particles with a velocity nearly equal to 
the velocity o f the central particle.

The essential point in our result is that the spatial dimension o f  clumps is 
much larger than predicted by Dupree. His result in one dimension is given in 
Fig.3. The ratio between the spatial dimension o f clumps in both theories is 
represented in Fig.4; this factor can go up to 400 in the validity domain. For 
instance, when the turbulent lengthscale is about 103 Debye lengths, the charac
teristic dimension o f clumps is about several tens o f Debye lengths.

In velocity space, however, the dimension o f clumps remains very small, o f 
the order o f Хо/г0>which is much smaller than the trapping velocity. This justifies 
in part the ‘singular clump’ model considered by Dupree by assuming that all 
particles in the clump have the same velocity:

r <  X0 = nXo ~ ~ —► r ~  several 10 Xp

*D 1 X0

tra p p in g  ( n  ^  1 )
т0 П Tq
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FIG .4. Enhancement o f  the ID  clump dimension with respect to Dupree’s formula.

F IG .5. Enhancement factor fo r  binary correlation, fo r  various turbulent lengthscales

n = XoAd-

We have seen that trajectory correlations reduce the relative diffusion for 
neighbouring particles. This means that the characteristic diffusion time t ci is 
much larger than r0 (and в larger than one). As a consequence, the correlation 
lifetime is found to be enhanced:

T^QL2 _ Tci >  r ^RQL ^  Tq ( 4 Л 0 )
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We thus find an anomalous enhancement o f  binary correlations for particles with 
small r and g, and this is the main point about clumps. It corresponds to long- 
range correlations (>  Xq). The enhancement factor is given in Fig.5 for several 
values o f the turbulent lengthscale X0 = nXo: it can be as high as 102 up to 
distances o f 1 0 2 Xp.

A  physical interpretation o f  this important effect arises from the fact that 
clumps also modify the dielectric function o f the plasma [17]. As the screening 
mechanism is modified, we interpret ’the clump as a generalization o f  the concept 
o f  Debye polarization cloud in a turbulent plasma. This could explain the 
occurrence o f a long-range ‘turbulent effective potential’ from the point o f view 
o f statistical mechanics, in agreement with the result o f Tegeback and Stenflo [18]. 
They have shown indeed that exponential shielding occurs only at distances o f 
the order o f the turbulent lengthscale.

Further, as clumps are a result o f trajectory correlations, we can say very 
roughly that neighbouring particles move together essentially because they feel 
the same long-range fluctuations: clumps could be thought o f as a residue o f all 
trapping phenomena in the turbulent waves.

In summary, we have derived a kinetic theory for turbulent correlations 
which describes the generation mechanism for correlations even without the usual 
binary collisions.

In a lowest approximation, the effect o f trajectory correlations can be taken 
into account, and binary correlations take a form similar to the Dupree result.
The characteristic time associated with spatial relative diffusion is defined as the 
clump lifetime. It has been shown that the effect o f trajectory correlations 
reduces the relative diffusion and thus enhances the correlation lifetime; thus also 
the amplitude and the range o f the correlations. The appearance o f these long- 
range correlations is the main point about clumps. It is interpreted as a modified 
screening mechanism which appears in turbulent plasmas and is associated with a 
long-range effective potential.
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Abstract

G R O W IN G  SE C O N D -O R D E R  W A V E IN  T H E  L A N D A U -V L A SO V  P R O B L E M .

A sh ort derivation  is given o f  th e re la tio n  betw een  th e  V an  K am pen m ode and th e 
d ie lectric  fu n ctio n  fo r  a V lasov plasm a. A num erical exam p le is given o f  a second-order 
grow ing low -freq u en cy  wave.

The one-dimensional motion o f electrons with charge e and mass m, in a 
neutralizing homogeneous background o f fixed ions with constant charge density 
—Ne, is governed by the equations o f  Vlasov and Poisson:

Эf  Эf  , 6  9 f  л ЭЕ e  r í .  ,  ̂ , 14
1ЙЕ üx m ~bv ~ ' Э̂  = —  ( / fd v " N) 0)

o

in which f(x , v, t) is the electron distribution function and E(x, t) the electric 
field. The weakly non-linear solution consists o f  the following expansion to 
second order in the field amplitude:

E = „  i  ( k x - c o t )  ,, ,E ^ e  d k d w  +

f  = F + i k E 1K e i ( k x - w t ) dkda ,  e  1

e e
—  i k " E 0K" -  ^  E . E . ' L  e  2 2m 1 1

e i ( k " x  w , , t ) d k d k . d(i)d(;J.

(2)
*  W ork p erform ed  as part o f  th e research  program m e o f  th e  asso cia tio n  agreem ent o f  

E u ra to m  and th e  S tich tin g  voor F u n d am en teei O n d erzoek  der M aterie, w ith  fin an cia l support 
fro m  th e  N ederlandse O rganisatie voor Z uiver-W etenschappelijk  O n d erzoek and E u ratom .
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The indices 1 and 2 indicate the order:

к "  = к  + к ' ,  ш" = ai + tu', =  E ^ i k j t o )

E 2 = E 2 ( k , k '  ,01,0) '  ), F = F  (v) ,  К = K ( k , u , v )

= Е 1 ( к ' , ш ' ) ,  К"  = K ( k " , i ú ' \ v ) ,  L = L ( к , к  1 ,ш ,ш ' , v )

Substitution o f (2 ) into (1 ) converts the problem into the following set o f 
equations (symmetrizing second-order terms in k, k' and in ш, со'):

(kV_Ü))K = Г Ж  Ш • f KdV = 1 ' I FdV = N
o

( k " v - ü j "  ) L = - ^ ( k K + k ' K ' )  , J L d v  = 0 (3)

The initial-value problem can be solved without explicit expressions for К 
and L which can be found in Ref. [1 ]. Putting t = 0 in Eq. (2) yields to first and 
second order:

i k j E ^ K d u )  =  ( e / e 0 ) g 1

i k " / E 2 K"dwdco 1 =  (e/ 2 m ) /E^E^Ldcjdco ' (4)

in which gi(k , v) represents the initial condition:

f ( x , v , o )  = F  + / g 1e i k x d k  (5)

The properties o f К (see Eq. (3 )) imply that (£2+ = £2 ± iO defining the integration 
contour)

9,-ш 
i2 + - k v

K d v  = 1 +
k v -ш

fi + - k v
K d v

=  1 +
e mk 

о
1 d v  e e + (k  , fi)

fi + - k v  d v (6)
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so the relation between к and e~ is

K d v  _  e 
Œ+- k v  fi+- w

(7)

Dividing the first o f Eqs (4 ) by Í2+ —kv and integrating over v gives the 
solution:

(8)

in which Ey and gy are defined by

Е * ( к , П )  =
E ^d w  

ñ + -a) '
g-L (k,Q) ± i

2 tt

g ±dv 
ti + -kv (9)

ЕДк, Í2) = E! + Ej ; Ej contributes only to E (x, t) for t >  0 and Ej for t <  0. 
Further, Eqs (3 ) imply that:

i b w "
fi+- k " v L d v  = 1 + k " v - u > "

ft+- k " v L d v

f i . - k " v  9 v (k K + k ' K ) d v  k "
k K + k ' K 1 
fi+ - k " v d v

, e *  ( k , ß k / k " )  , , , e ± ( k ' , n k ' / k "
K П + -ш к "А  П + -ш'к"/к' (10)

in which e± (k, Í2k/k") is given by Eq. ( 6 ) with £2+ replaced by Í2±k/k", not 
(Í2k/k")± . The relation to solve the second equation (4 ) is:

L d v k "
fi - k " v  f i . - w "  9 Í2

-г  +

= k " M “ (11)

in which the brackets contain the same expression as in ( 10) and M1 agrees with 
Eq.(16) o f Ref. [1 ]. The above derivation o f  is shorter and more direct than 
in Ref. [1 ]. In the further calculation, only the Landau poles in E, are retained:
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+ R ( ß + i y )  R ( - ß ± i y )
Е 7 ( к , ш )  = -----

1 ( O - ß + i y  ш+ ß + i y ( 1 2 )

to perform the со and со' integration in

+ GE “  =  + . ■
2 4 nm e “ ( k " , f i )

E ^ j t T d w d w 1 ( 13)

where E2 is defined by

E j i k / k *  , n )  =  | i
E 2dwdu)1

(14)

Note that

E2 e
- i w " t

dcodoo1 = (E2 +E ¡
'v - i í í t j r ,J e  dft (15)

in which EÎ contributes only for t >  0 and E¡~ for t <  0. The long expressions 
for Ej resulting from ( 13) are given by Eqs (20) and (21 ) o f Ref. [ 1 ] and are not 
reproduced here. It turns out that Ea has a double pole at Í2 = (ß + Í7 ) k"/k if 
k/k' <  — 1, and many other poles which are listed in Ref. [ 1 ] but neglected in this 
paper. The first term o f the Laurent expansion o f Ej around ( ß + Í7 )k"/k reads:

-  TT e  к  
m

i t 3 k - k 1
k + k "

Rx ( ß + i y )

[Í2- ( ß + i y )  k " / k ]

Ri 1+ i y ’ ) R j  ( ß 1- i y 1)

к  1 ( ß + i y ) - к ( ß 1+ i y 1) к  1 ( ß + i y ) - к ( ß 1- i y 1) j + t - ß ’ )

( 16)

in which Ri is the residue o f E'j at ß ' ± Í7 ', the Landau poles o f E i, and (— j3') 
means the preceding expression between brackets with ß ' replaced by —ß ’ . The 
amplitude o f  the growing wave ( 16) is now evaluated for a Maxwellian electron 
plasma which is initially disturbed as follows:

g l  =  V 1 ^  F< ^
(17 )
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This disturbance corresponds approximately to f(x , v, 0) = F (v  + v^ x )). Then 
it follows from ( 8 ), (9 ) and (12) that:

- i e  y 1
V e ± i ^  = r f  — r1 -

1 о  3 e “ /3Q Í2 = ß ± i y

mv .  ± ,1 e - 1

2lje д е ± / 3Í2

- 1

2тге I
(18)

To lowest order in kvt/cop (o jp is the plasma frequency and vt the thermal 
velocity),

n = ß ± i y k 2 v t

(19)

so that

mv,  &
R 1 ( 3 ± i  Y ) = -4 тте

+ 1 -  i  I  ---- 2-
k  v :

(20)

With (20) the expression between square brackets in (16) proves to be, to lowest 
order in kvt/cjp>

mv

4 ire
4 i y  1

k '  ( k 2- k 1 2 ) v £

and the growing second-order wave has the form:

A e  ^  e y t k " / k  e i ( k " x - 3 t k " / k )  (21)
2 m

k k ' ( k + k " ) v 2
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in which E[ and Ë; are the initial amplitudes o f the first-order waves. The 
relation with the residues is

R 1 ( 3 + i Y )  = ( i / 2 i r )  6 ( k - k Q)

As an example take

k A ^  = 0 . 3 5 ,  y /ш = - 0 . 0 6  
D P

in which XD is the Debye length. As a function o f k' the expression 7 'k "2/k' (k + k'') 
has a sharp maximum; the half-width is between k'XD = —Q.32 and —0.24. Take

k ’ XD = -  0 . 3 ,  Y ’ /Wp = -  0 . 0 2

The second-order wave has a low wavenumber, frequency and damping:

k n XD = 0 . 0 5 ,  ß k "/ku )p = 0 . 1 5 ,  y k " / k w p = -  0 . 0 1

The ratio o f the amplitudes o f the second-order wave and the k'-wave, 
which is the least damped first-order wave, is

in which co£ = ekE jm  is the bounce frequency. Owing to the exponential factor
^  J J H J V 1 U C U  i l i a I  w b / w pthis ratio can exceed unity for some t smaller than со, 1 provided that íoJ íú is

very small ( < 1 0  3)

Discussion

It has been shown that two Landau-damped waves o f the form

E i e ^ t e i ( k x “ ß t )  , Ё / Ч е 1 ( к ' Н Ч )

give rise to (apart from other well-known non-linear waves) a second-order wave 
o f the form (21) provided that k/k' < - 1 .  A  heuristic argument for the existence
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o f this wave is the following. The perturbation o f the distribution f  corresponding 
to the first Landau wave is o f the form

e i k ( x ' v t )  d F  
ß + i y - k v  d v

Integration over v shows that this perturbation in f  yields a perturbation in the 
density o f the form e7 t e Kkx-/3t) T]len ¡n th e  case o f simultaneous excitation o f 

two Landau waves, a second-order perturbation in f  o f  the form

e i k ' ( x - v t )  9 e i k ( x - v t )

. ' H - i y ' - k ' v  3v  ß + i y - k v

can be expected. Integration over v shows that the pole at v = (ß + iy) /k 

contributes terms o f the form te7tk /kel(k x "^tk provided that к and k" have 
the same sign. Other features o f the second-order wave, such as the condition 
kk' <  0 , cannot be derived from this simple argument.

The form (21 ) for the growing wave has been derived assuming the special 
initial condition (17) to make the calculation simpler. A  different 
form o f the initial condition changes,in general,the relation (20) between R(j3 + Í7 ) 
and R(ß —iy), corresponding to Landau waves for t >  0 and t <  0. Therefore 
the form (21), and consequently the asymptotic behaviour o f a Vlasov plasma, 
depends on details o f the initial disturbance, even when smoothness is assumed.
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Abstract

S T A B L E  MHD E Q U IL IB R IA .
¡ .In tr o d u c t io n .  2. S tab ility  criteria : Hamada co -ord inates; th e  n ecessary  stab ility  

crite rio n ; su ffic ie n t sta b ility  criteria . 3. Equ ilibriu m  and sta b ility  o f  a to ro id a l con fig u ration  
near its m agnetic axis: equilibrium  fo rm u lae; stagnation  p oin t discussion and b e ta  estim ate ; 

ap p lication s (a )  th e 8 = 2  ste lla ra to r , (b )  t = 0  equilibria. 4 . C onclusions.

1. INTRODUCTION

Various methods at different stages o f development and with different main 
virtues are in use for investigating the magnetohydrodynamic stability o f magneto- 
hydrostatic equilibria. The method with the best record o f achievement is 
numerical mode analysis o f equilibria with one ignorable co-ordinate. This method 
has been developed in two ways: numerical evaluation o f the full MHD spectrum 
for axisymmetric equilibria (e.g . 1 [1—3]) and numerical solution o f the linearized 
MHD equations as initial value problem for axisymmetric (e.g. [4 ]) and helical [5] 
equilibria to obtain the growth rates o f the most unstable gross modes. For three- 
dimensional configurations the equilibrium itself becomes an unsolved problem [6 ] 
and several numerical codes have been developed for solving the non-linear MHD 
or artificially modified MHD equations to study equilibria and their stability 
properties (e.g. [7—9]).

In this paper we consider a third method which consists in development o f stability 
criteria and their use as tools for the construction o f stable magnetohydrostatic 
equilibria. Several specific advantages and drawbacks are associated with this 
approach. I f  a sufficient stability criterion is used, complete stability is proved, 
which will be difficult with numerical codes. There exists a consistent combination 
o f equilibrium and stability analysis that simplifies even three-dimensional con
figurations to the degree that studies in the space o f configurations become

* W ork perform ed un der th e term s o f  th e  agreem ent on asso cia tio n  betw een  M ax-Planck- 
In stitu t für P lasm aphysik and Eu ratom .

1 No a ttem p t is m ade to  give a co m p le te  or w eighted list o f  re feren ces ; th ey  are m eant 
as illu strative exam ples.
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possible. I f  a necessary stability criterion is used, no firm conclusion can be drawn 
with respect to stability. On the other hand, the violation o f a necessary criterion 
may be tolerable. Existing sufficient stability criteria probably tend to be too 
pessimistic in many cases so that their usefulness may be doubtful because the 
ß-values obtainable are too low.

2. STAB IL ITY  CRITERIA

The sufficient stability criteria which will be described can only be formulated 
in Hamada [10] co-ordinates. We therefore introduce the Hamada formalism as 
far as is necessary and then describe the available stability criteria.

2.1. Hamada co-ordinates

The magnetohydrostatic equilibrium equations written in Hamada co
ordinates are:

where r(V , в, f )  is the position vector; V  is the volume inside a flux surface (or, 
for i =  0, inside a / di/B = const surface); в, f  are angular-type co-ordinates 
increasing by unity the short and the long way round the torus,respectively;
X, ф and I, J are the fluxes and currents; i is the rotational transform; p is the 
pressure; and ' = d/d V. We shall also need the relation o f the Hamada co-ordinates 
to the geometrical co-ordinates o f  toroidal configurations in the neighbourhood 
o f the magnetic axis. As geometrical co-ordinate system we use Mercier’s [11] 
co-ordinates given by

(1)



d.S2 = d f  -t-çïoLy2 -  I x c fd y c L l  t [ ( l - X f ü H f )  + Z 2̂ z] d ¿ ^

Ц 1 = <f ( I  -  К  <{ Un  у )
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(2)

where £ is the arc length along the magnetic axis with curvature к and torsion r, and 
p,<p are polar co-ordinates in the plane perpendicular to the magnetic axis at 
position £. With the position vector given by

with

? (4 M )= + r,(Q,¿)ví  ̂ o(y)

iiv.ox) = (oit.) + {<(ÔX)Vi  + o(v)

(3)

where r0(£) describes the magnetic axis, the following relations hold [ 1 2 ]:

d l
Cq

e,

^ -  I (Q., ■£ ) »г + *£■ ( ©, Í  ) Ь

{ = í c Соз2тт0 + SÚT-¿Tr<=>

Цс й п Ъ г О  + ^ 5?£п2тг0 

.£ = /  £<я2тг0 + A  sinhrQ
- i  С  Л

= ( jr  / 0 ¿ (  е 1 srn k smoC + e х Gnk cosccj

\s = ( т  ^ ( е ^  с л  К SLKioc -  е  ^ л к к ' с л ^ . )
_ 1 . í _ 1

-  (тг/ío,ç)  (t sen K on<<. -  е 2 с л «  sóa ^

-  (У /<,,.) (e^ t «  К coj°¿ + c^sikk

K(L) - K(0) = ¡urm * * fz_) - «¿foj

K' í l )  - — Ц - . ( 4 *- + 2 r  + 2 * ' )  -  ¿ZLA
e  + -  4 '  c a qo <¡c

(4)

arefan [  e' 1-ban + pc)] -  к Ш  + 0 (V¿)
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^c,t, ~ (^ ,< «/ " ^ 0, + ¿TTto-f j  -  2 X £0̂ . §c

"  ^ 4 , « / А < ) / 5 - 1 t t l 0 / c =  2 s e / 0|C)£ s

(6)

-+
where c0 is the field on the magnetic axis; n, b are the normal and binormal o f
the magnetic axis; e is the half-axis ratio o f the elliptical (in second order in the 
distance from the magnetic axis) plasma cross-section; a (for e >  1) is the angle 
between the binormal o f  the magnetic axis and the major half-axis; and m is the 
number o f full turns o f the normal over the length L o f the magnetic axis.

2.2. The necessary stability criterion

In Hamada co-ordinates, Mercier’s necessary stability criterion [13] reads [14]:

i l 2 -  i > [ K u  ^ 4 ( ^ ) ' + ц ф ф ] - р 4 ч ц - ц г^ 0  (7)

Note that this is a form o f the criterion without cancellation o f diverging terms
as one approaches the magnetic axis, where the criterion reduces to (fo r p <  0 )

> 0 (8)

For irrational i the mean values are replaced by / ... dödf .  Evaluation o f W! on 
the magnetic axis in terms o f the quantities introduced in § 2.1  then yields [ 1 2 ]
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For equilibria with one ignorable co-ordinate (e.g. in axial and helical 
symmetry) Mercier’s criterion has been evaluated over the whole plasma cross- 
section. In all hitherto known instances (e.g. [1 5 -1 7 ]) it becomes marginal at 
first on the magnetic axis, and existing mode analyses ( [1,2,  4 ]) show no unstable 
internal modes (i.e. modes vanishing at and outside the plasma boundary) i f  it is 
satisfied on the magnetic axis2. This leads us to two conjectures:

(a) For the specific low-ß large-aspect-ratio limit o f a conceptual sequence 
o f configurations obtained by keeping the profiles fixed and increasing 
the aspect ratio by moving the p = 0  surface towards the magnetic axis, 
Mercier’s criterion on the magnetic axis is sufficient for the stability 
o f internal modes.

(b ) There exist profile conditions for which it is possible to reverse the 
above sequence (and obtain finite-aspect ratios and |3-values) and keep 
the internal modes stable.

As long as these conjectures are uncertain, known sufficient-stability criteria, 
which are, in general, more restrictive than Mercier’s criterion, have to be used 
to prove stability. Since the necessary stability criterion is capable, at most, o f 
predicting stability with respect to internal modes, the restrictions imposed by 
stability against external modes are, in general, more severe (e.g. [4, 5]).

2.3. Sufficient stability criteria

Two cases have to be distinguished: non-vanishing and vanishing current 
density j 0 on the magnetic axis.

A.

In this case the sufficient stability criterion [18] is also restricted to internal 
modes. Stability is proved by constructing one-dimensional energy estimates o f 
the energy variation and holds i f  the following three inequalities are satisfied:

2 M eanw hile a new  necessary  stab ility  crite rio n  [3 2 ]  has b een  fou n d , w h ich ,o ff th e  
m agn etic axis, is m ore stringen t th an  M ercier’s criterion .
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V

+V(jx-Ï<p)] + 1г гуулр. Hz > О J 1 a 1.2

+  M3(v<i>+ x )2- -  [ c “ 2( v ^ X v M , i -  m J ) ]  > 0

(10)

for all real v, where V  is the total plasma volume and

M = fmk -Gl_ M = WtVt -TL. M = (lv)Z tnĉSj—
1 e , ï  k e l1 2 e.s k ç l ' 3 ' e ,s  bVI1

In the neighbourhood o f the magnetic axis the following sufficient criterion 
is obtained with Г , , Г 2 -*■ 0:

ФоФо + P o l v ï l \  > О (И)

where

к с | " 0 = у т  + " ' ■ [ ( ъ Ъ -  1с4)2+ ( и * с -  ( c¿s )2]  02)
о.А

A  comparison o f  the necessary and the sufficient criterion on the magnetic 
axis has been made for the case o f axial symmetry [14—16] and reveals that the 
gap between the two criteria is o f a quantitative and not qualitative nature, so 
that critical values o f the rotational transform on axis as well as the j3-values are 
not seriously limited i f  the sufficient criterion is taken into account only on the 
magnetic axis.

An improved form o f the stability criterion (10) (minimization o f the one
dimensional estimates occurring in the 5W estimate [18]) was applied over the 
whole plasma cross-section o f  axially symmetric equilibria [16]. The results are
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that stable equilibria with j3-values o f about 1% and rather large aspect ratio 
(A  ~  15) and stable equilibria with moderate aspect ratio (A  ~  5) but rather low 
(3-values ( — 0.2%) can be constructed. These results show that the one-dimensional 
estimate o f the energy variation used in [18] is probably too crude.

B  - _ _ |o_ 7  0 .

The first criterion obtained by Solov’ev [19] for this case was later improved 
to the following stability criterion [20]. Stability holds if a single-valued function 

A exists for which

И А  -  -Л.2" | v  V I 2" -  I ? ' / / 2' A > 0  (13)

with

lvVlz A = ¿ I v Vr ^ j x v l / XB- p j F V

throughout the plasma. Since this guarantees that <5Wfluid is positive without 
boundary conditions on the perturbations, this criterion provides for complete 
stability. In the neighbourhood o f the magnetic axis, A  can be determined and 
the following stability criterion is obtained [ 1 2 ]:

4>o Фо + Po j  l v Ç /2 0 oit: > 0  (14)

which is less restrictive than E q .(l 1) although it implies full stability. This is, 
o f course, a consequence o f the vanishing current density. Toroidal configurations 
without internal conductors are necessarily three-dimensional for j 0 = 0. A  type o f 
equilibrium with one ignorable co-ordinate to which this stability criterion can be 
applied is helical symmetry. Similar to the result in axial symmetry, it is found 
[2 1  ] that taking into account the stability criterion on the magnetic axis alone 
does not limit the ß-value severely; an evaluation o f the criterion over the whole 
cross-section o f helical equilibria is still lacking.

3. EQUILIBRIUM AND STAB IL ITY  OF A  TO RO ID AL CONFIGURATION 
NEAR ITS MAGNETIC AXIS

Several lines o f  thought for /3-enhancement in toroidal configurations are 
currently being investigated (e.g. [22]). Here we describe the search for stable
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three-dimensional configurations with the help o f  necessary and sufficient stability 
criteria on the magnetic axis and an appropriate approximation o f the equilibrium. 
This is a rather crude approach because only the most primitive features o f 
equilibrium and stability are incorporated in the theory. Nevertheless we think 
that this method is a useful tool, mainly for two reasons. It is the only method 
currently available for a systematic search in the total space o f configurations and 
it is capable o f  singling out many configurations which will probably have (3-values 
too low to be acceptable. Having already listed the stability criteria to be used, 
we now describe the equilibrium calculation necessary to obtain the magnetic 
well Фо/Фо on the magnetic axis and then the stagnation point discussion o f the 
third order (in the distance from the magnetic axis) flux surfaces leading to ß- 
estimates and, finally, applications o f this theory.

3.1. Equilibrium formulae

The first consistent equilibrium calculation up to third order in the distance 
from the magnetic axis for a general three-dimensional configuration was done 
by Mercier [11]. Here we present a more recent concise version o f this calculation 
[12]. Let V  be the volume inside a magnetic surface; then

where F is the cross-sectional area o f the magnetic surfaces normal to the magnetic 
axis. We choose the following third-order representation for F:

V

(15)

with

u  = + «c

У  = <> s ù n y  +  2 л < > г ( e  c < n z u  + —  s o ^ z u.)  
e  '

The meaning o f e and a has been explained above. The non-dimensional third- 
order quantities S and Д describe symmetric and antisymmetric triangular
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deformations o f the surface, where the symmetry holds with respect to u = 0 .
The quantities S and s describe shifts o f  the magnetic surfaces with respect to the
magnetic axis, S and s being positive for shifts antiparallel to the normal and
binormal respectively. Let us also introduce the shifts in the direction o f the 
larger (b ) and smaller (a) half-axis o f the elliptical cross-section by

S a  =  S  С е л  o L  -  S  s i n .  <<,

S у * S Strict ■+ s иоъоС

and the following transformed quantities:

The equilibrium equations between these four quantities then read

(16)

where

R /
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L a e e 2
8it. c i  i Z  <чо«с [к . ' + ¿ ' ( 2 e - | ) -  ^ r / e ]

+ ^  [ f t  (t -¿e)  + Z x  l̂ e  + e)+ 1 (2e *  i ) ]  ! -  Ь*

Here,
(17)

bs* = Po И °  ( b r c««<- + b; smec)

bc* - p0L <j0 ( ■ OnoC - Lr Since)

where the complex quantity b = br + ibj solves the equation

\> + ¡ (К о -с с ' )Ь  = - í * p ( i ¿ )  c 0 Э€ ( e  ■Чсг)* -  it^ s in c ¿ )  (18)

Note that the quantity b characterizes the influence o f the finite pressure 
gradient (i.e. plasma-ß) on the relation between the shifts and triangularities.

Using the above quantities, the magnetic well on the magnetic axis is given 
by the following formula:

фо

Фо 1тг< Ï Фт4-(т [е + е) J t-O I

e +

_ á i  
I »  т

jjy l 'f c~*-[ e  ̂ (A sms. + Sccnccjjdt

(19)

Since only two o f the four quantities S, s, ô, Д can be prescribed, the well can 
only be evaluated with the help o f the third-order equilibrium equations.

In the applications we shall restrict our discussion to cases without 
longitudinal current on the magnetic axis or c0 = const i f  there is a current on
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the magnetic axis, because for these cases the explicit diamagnetic deepening o f 
the magnetic well (the second last term in Eq. (19 )) cancels with the first term 
in Eqs (9 ) and (12) inserted into the stability criteria ( 8 ), (11) and (14).

3.2. Stagnation point discussion and beta estimate

Defining the plasma-ß by

where Vp is the plasma volume, we see that stagnation points in the third-order 
flux surfaces, which limit the attainable volume, lead to the following |3-estimate:

where V s is the volume limited by the third-order stagnation points. Equation (15) 
yields the following expression for V:

(20)

О

(21)

V

(22)

where

so that V s may be estimated by

k ______________  ¡t

1 ( 2 s : - 2 s t* + A * - < r j 2 (23)
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This estimate would only fail i f  S* = = Д* = 5* =  0, which would impose
R* = R* — 0. Toroidal equilibria o f this type have not yet been found and would 
obviously be hard to construct3. Considering Eqs (16), (21), (22) together, we see 
that the following procedure has to be observed in order to obtain a correct 13- 
estimate. Either S*, or 5*, Д* and p0 may be prescribed; then 5*, Д*
(or S*, S p  are calculated according to Eqs (16); the stagnation points o f the 
third-order flux surfaces, Eq. (22), are calculated for each value o f £, which leads 
to a maximum admissible volume Vs(£); the minimum value o f the volumes V s(£) 
(an upper estimate o f this quantity is provided by Eq. (23 )) has to be inserted in 
Eq. (21); to eliminate the arbitrary choices for S*, and p0, the ¡З-value has to be 
optimized with respect to these quantities. Only this optimized ß-value may be 
considered as a quantity which characterizes a basic property o f the configuration 
which is studied. I f  one wants to obtain a j3-estimate taking into account a stability 
criterion, an additional inequality resulting from one o f the Eqs ( 8 ), (11), (14) 
for the quantities S*, Sg and p0 has to be satisfied. Thus we see that stability 
criteria on the magnetic axis have to be looked at in two ways. Taken per se, 
they indicate stability or instability for given equilibrium functions in the 
neighbourhood o f the magnetic axis. In order to calculate stable ß-values, they 
are properly used as side conditions in the equilibrium ß-estimates.

3.3. Applications

(a) The 4 = 2  stellarator

We consider an £ = 2 stellarator with circular magnetic axis o f  radius R, 
vanishing current density on the magnetic axis, constant e, constant da/dß = n/(2 R), 
where n is the number o f  field periods, and two shifts o f the magnetic surfaces 
with respect to the magnetic axis: a shift S0 in the direction o f the normal to the 
magnetic axis and a shift S2 rotating with 2a. as one proceeds along the magnetic 
axis. This is the simplest three-dimensional configuration o f a type for which the 
q = / d£/B = const surfaces are generated by means o f the rotational transform 
alone. In the equilibrium equations this is reflected by the singularity appearing 
for i0, (KÓ — a ') ->• 0 in Eqs ( 6 ) and (18). This type o f stellarator has been con
sidered several times, particularly with respect to the stability criteria on the 
magnetic axis [11, 23—26]. With respect to the j3-values that can be obtained in 
a stable manner, the situation still remained unclear, which led us to a systematic 
study in accordance with the procedure in § 3.2. The result [27] was that, 
irrespective o f the five parameters (e, n, p0, S0, S2) characterizing this type o f 
stellarator, there are universal bounds for the j3-estimates o f 0.66% and 0.22% for 
the necessary (Eq. ( 8 ) )  and the sufficient (Eq. (14 )) stability criterion, respectively.

3 M eanw hile to ro id a l equilibria o f  th is ty p e have been  con stru cted  [3 3 ] .
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(b )  i = 0  equilibria

Again we consider vanishing current density on the magnetic axis. The 
q = const surfaces are then solely determined by external shaping fields. A  
condition for the existence o f such equilibria, namely that q be stationary on the 
magnetic axis, was in its general form first discussed by Shafranov [28] and may 
easily be obtained from Eq. ( 6 ):

0 = Ç'x.Ç'.dK = тг’ Ц о " '2' c0 1 пак.

0  = d-K - TT~^ <j 0 ^ X  C, z ( t ^ S W c C  ОП К - e ci Sink) ot£

(24)

We restrict our further discusssion to a plane magnetic axis and reflectional 
symmetry across a plane perpendicular to the magnetic axis, a = К  =  0, so that 
the condition

Ö  , k ’= x  С. 1 t 2

is left. In a consistent calculation up to third order in the distance from the 
magnetic axis, an additional condition has to be met in order that

Cj = <f(o) + j  (о) V  t O ( v ^ )

be satisfied. This condition reads

j i t

- + 3 Coee'k k'  -  c J k k ' t 1

(25)
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while

£  oU J c 0 к ' г ( е 2+1) + ц  ^  ( е г-*1) + (e. *+l )

+ l c ce e ' k k '  -  c0 ' W e 1
c0‘ e

+ -  A-тт (j„ p 0 e k 2 j  < О

(26)

is obtained for the sufficient criterion (14). Considering the structure o f these 
equations, we see that Eq. (25) imposes a severe additional restriction on the 
functions k, c0, e,S| compatible with Eq. (26). Another interesting result [29] 
is that the sufficient criterion Eq. (26) is identical with the necessary criterion 
Eq. ( 8 ). This comes about because, for t =  0, Eq. ( 8 ) has to be evaluated on each 
field line and

- f eâ -  = \ v Z l Z
0

for this type o f equilibria. This appears to be the first incidence o f identical 
necessary and sufficient criteria.

For the case c0 = const, j3-estimates have been obtained several times [29, 30]. 
Combining Eqs (21), (23),(25) and (26) and using § к d£ =  2 i t , we obtain as upper 
bound for the /3-estimate

ß < — 7—  t#** A2
r  'M 64 ¥-  

where

a 2 =

This estimate is still much too optimistic, as a numerical optimization [29] 
o f the ß-value shows ( ß ~  2% for A  ~  50; ß ~  11% for A  ~  1000). It seems that
inclusion o f a variable c0 does not change these results very much if  one is not
willing to consider extreme variations o f e and c0 [31 ].
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The situation with regard to sufficient stability criteria and their application 
to the total space o f toroidal equilibria needs to be improved. I f  it is decided to 
pursue such efforts, it would be desirable to achieve progress in several directions:

(a) For cases with non-vanishing current density on the magnetic axis,
it should be possible to obtain better sufficient stability criteria for the plasma 
region o f f  the magnetic axis.

(b ) For cases with vanishing current density on the magnetic axis, examples 
should be had in which the sufficient stability criterion is evaluated over the 
whole cross-section in order to study its behaviour o f f  the magnetic axis. For 
helical equilibria this would be feasible.

(c ) A  complete classification o f the total space o f  toroidal configurations 
is still lacking even on the relatively primitive theoretical level discussed in §3.
This classification should, in particular, answer the question whether or not it is 
possible to obtain sizeable stable ß-values in geometrically reasonable toroidal 
configurations. So far, there appear to be no compelling arguments that render 
this goal impossible. The analysis o f §3 shows that configurations with rotational 
transform, but which satisfy the condition that q be stationary on the magnetic 
axis for vanishing rotational transform, are possible candidates.

4. CONCLUSIONS
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Abstract

D ISSIPA TIV E MHD ST A B IL IT Y .
A short survey o f the literature on dissipative magnetohydrodynamic instabilities is given 

as introduction. A m athem atical technique allowing ‘energy principles’ is developed and applied 
to toroidal equilibria and to  cylindrical tokam ak-like equilibria, taking into account resistivity 
and the full m acroscopic tensor, i.e. fin ite Larmor radius (F L R ) effects and viscosity. This 
allows general statements to be made about MHD stability in the presence o f  viscosity and F L R , 
and permits, without much com putation, a qualitative and comparative study o f resistive 
perturbations under the influence o f  F L R  and viscosity. Applications to tokam ak observations 
are also sketched. Finally, it is proved that the stability o f  dissipative time-dependent force-free 
fields can be analysed by  a simple functional containing only the perturbed vector potential. 
This proof is valid even if all non-ideal effects o f the two-fluid theory are considered. The 
conclusion contains a discussion o f the open problems, and suggestions are given for their 
solution.

INTRODUCTION

Dissipative instabilities in hydrodynamics have been considered since the 
beginning o f this century in several well-known works, described in, for example, 
the book by Lin [ 1 ]. Dungey [2] is apparently the initiator o f an instability 
mechanism due to resistivity which seems to play in MHD the role o f viscosity 
in hydrodynamics. Several papers dealing with particular resistive instabilities 
appeared between 1958 and 1963. They are referred to in the paper o f Furth, 
Killeen and Rosenbluth [3] dealing with the sheet-pinch finite-resistivity 
stability. These authors discussed qualitatively the influence o f other non-ideal 
effects such as viscosity and thermal conductivity on the eigenvalues (see also 
Coppi’s paper [4]). Several later papers based on [3] tried to introduce more 
sophistication in geometry and physics by using scaling and expansion techniques. 
Most o f the contributions came from Coppi, Furth, Frieman, Greene, Johnson, 
Rosenbluth and Rutherford, and many references can be found in, for example,

*  Work performed under the terms o f the agreement on association between the Max-Planck- 
Institut für Plasmaphysik and Euratom.
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the book by Cap [5]. Some references are also given by Glasser, Greene and 
Johnson [6], which is a sort o f culmination point o f expansion techniques and 
scalings involving geometry and physics.

Besides this progress in the physics o f resistive instabilities, some mathematical 
progress has been achieved by Barston [7], who was the first to prove for the 
sheet pinch a necessary and sufficient condition similar to an energy principle.
He also gave exact estimates for the growth rates. In fact, this energy principle 
was already used by Furth [8] but without proof (as far as the reviewer is aware).
An extension o f Barston’s work to two-dimensional plasmas was made by Tasso [9].

It was noticed [3,8]  early that gyroviscosity and viscosity could play an 
important role in the tiny resistive sheath o f the modes. Generally, non-ideal 
effects and realistic geometry should be taken into account. This is too much for 
an eigenmode analysis, but other methods such as energy principles, i f  they 
exist, could at least give qualitative answers to such problems. A  recent paper 
by Tasso [10] shows how to obtain a quasi-energy principle for realistic geometries 
taking into account resistivity, gyroviscosity and viscosity.

Sections 1—5 o f this paper closely follow Ref. [10]. They describe the 
equations and geometries for which energy principles can be given as well as the 
results and applications which can be expected. In addition, a sufficient condition 
[11] for the stability o f general dissipative force free fields is given, and its 
relation to Taylor’s invariant [12] is discussed.

1. STAB ILITY EQUATION ALLOW ING ‘ENERGY PRINCIPLE’

Let us consider the following equation:

N ¿  + ( F + M ) ¿  + Qç_ = О ( 1 )

where f  is a complex multidimensional representation vector in a functional 
space, N and M are hermitic and positive operators, and Q is a hermitic and F 
an antihermitic operator.

It can be seen that this equation contains several limiting cases. I f  
F = M = 0, it is the ideal MHD case [13, 14] for static equilibria. I f  M = 0,
F Ф 0,it is the case o f linearized conservative systems such as the linearized Vlasov 
equation [15]. I f  F = 0, M Ф  0,it is the case o f a resistive plasma in one-dimensional 
[7] and two-dimensional [9] geometries.

(a) Sufficient condition for stability

Let us first recall the definition o f the scalar product for two vectors and r¡ 
denoted by (£, rj):

( € » n )  •= f  dt ç*. n (2)
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the Hilbert space to which £ and r¡_ belong being restricted to functions fulfilling 
specific boundary conditions suggested by physics.

Let us now consider the scalar product o f j? with the left-hand side o f Eq. (1 ) 
and add to the expression its complex conjugate. The ( f ,  F f )  terms cancel 
because o f the antihermiticity o f F, and one obtains

\ [ (Ç.NÇ)  + (C.QC)] * -  -  (C.MÇ) (3 )

I f  Q is positive, i.e. (J ,Q f) >  0 for all f , the system is stable owing to the 
positivity o f N and M.

(b ) Necessary and sufficient condition for stability

I f  M p  0 and if (f,Q ? ) <  0 for any f  = rj, the system is unstable. Together 
with the previous result this leads to a necessary and sufficient condition.

Proof: The proof is done by demonstrating incompatibility o f stable f  
and negative values o f ( f ,Q f) .  Indeed, it is then possible to choose ¿  = 77 at a 
particular time with ( f ,Q f )  <  0, and then, integrating Eq. (3 ), we obtain ( f ,Q f )  
at later times:

(4) 

Co

From Eq. (4 ) it follows that (f,Q ? ) remains negative and at least finite for all 
later t >  t0. This excludes the possibility that f  -» 0 as t -> °°. An oscillation 
o f f  around a finite value at t -*  °° is also in contradiction to Eq. (4 ), the integral 
becoming infinite because £ vanishes only on a countable set. The last possibility 
for a stable f  would be to tend to a constant in time, but this is in contradiction 
to Eq. (1 ) itself since Q f cannot vanish because o f Eq. (4).

It is appealing to conjecture that the growth will be exponential because 
any power growth is incompatible with Eq. (4). A  rigorous proof o f exponential 
growth cannot be done in the same way [7, 16] as for F =  0, in which case 
overstability is forbidden. We conclude this section by saying that for Eq. (1) 
with M Щ 0

U,QC) > 0 (5 )

is necessary and sufficient for stability.



2. SIMPLEST MODEL AND TIME SCALES

Let us consider a second-order differential equation with constant 
coefficients which is a particular case o f Eq. (1):

1 "
2 y  + ( a + i  b ) y +  с у = О 

with a >  0. The solution is у = ешЕ, with
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/  ! 2
w = -  ( a + i b )  + / ( a+ i b )  - 2 c

and с >  0 is necessary and sufficient for stability.

a ) I f  a2+b2 <<| с

~ -  (a + ib )  + i  /2|cl (l -/ (a + ib )2
^ 4|c|

In the unstable case the growth rate is given by ^/fcTas expected.

b ) I f  a2+b2 » I  с

s -  (a + ib )  + (a + ib )  [ i -  -----------j
V (a + ib )

The unstable case gives a growth rate: 

- a  с
2 . 2  a +b

c )  I f  a2 << b2 = |c|

ш -  (a+ib) + i  » b2+2c (  1 ~ --ÿ --
V b  + 2

and ш (a+ib) + / i2a b

b +2c 

f o r  b 2+2c

2
f o r  b +2c = 0

so t ha t  Re (to) s  a ( -—■■■■ -  1  ̂ f o r  b2+2c = I

R e (ш) с  /ab f o r  b 2fo r  b +2c = 0

(7a)

(7b)

(6)

(7c)

(7d)

(7e)
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d) If a2sb2»|cl

Re (to) Я /fcT (7f)

This particular example shows that although the sign o f с governs stability 
independently o f the values o f a and b, the growth rates are strongly dependent 
on the relative magnitudes o f a, b and c.

3. THREE-DIMENSIONAL PLASMAS WITH FULL-PRESSURE TENSOR

The macroscopic equations are o f the following form:

P f *  VP "

IS + y_ x _B = 0 
p + V-pjv = 0

P “ f(p)
V x В = j
V - В = 0
V X  E = -  В (8)

The pressure tensor [17] П is given by

--и = а (г + г ) + e г + (r - г )
X X  X X  y y  x y  4 a  x x  y y

- n  = a ( r + r ) - e r  - t-  (Г - Г )  y y xx y y xy 4 a xx у у

-IT ~ 2 a Г 
Z'¿ zz

2
- л  = - ïï = 4  ( г  -  г  )  + 4 -  гху ух 2 yy xx 2а ху

ß2
-  П = -  Л = 2 е г  + 2  Г -xz zx yz y:¿ а

ß2-II = - II„ - 2 -  Г - 2 ß Г
yz 2z a y z xz

. 3v. 3v. 3v .
n _ * / 1 . J \ * n ö . .
ij 2 Эх. Эх. 3 Эх ^  j i n

ß = p/to .
Cl

(9)

2 лr 3 w . т . .
3 c i  i l .
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x, y, z are a local system o f Cartesian co-ordinates, z being along the magnetic 
field; coci is the ion cyclotron frequency and ту the ion-ion collision time.

After linearizing the system (8 ) around a static equilibrium and expressing 
all physical quantities in the perturbed velocity, we obtain (see Ref. [18])

p -Ц? + 4 ?  v ’ n + Q v = 0 (10)° 3t - -

where Q is the MHD stability operator. To find out what the properties o f the 
operator V ' П are, let us consider П in a general co-ordinate system x 1, x2, x3 ; 
then

J '  ’ H )] dr П™ /g dx* dx2 dx3

“  -  A l rn v 1 /g dx* dx2 dx3 
J  r ,n

+ [  —  (/ g  v '  ï ïr n )dx*  dx2 dx3 (11)
J  ЭхП Г

where ,n is the covariant derivative with respect to xn . The last integral vanishes 
because o f the boundary conditions on v, and Пт  Vr>n can be evaluated in the 
local co-ordinates system.

It turns out [18] that the terms in a and j32/a are symmetric and positive 
definite, and the terms in ß are antisymmetric. The pure ß terms are due to the 
finite Larmor radius (F LR ), the a terms to the magnetic-free viscosity, and the 
ß2/a terms to the magnetic viscosity.

Equation (10 ) is o f the same type as Eq. (1 ), the F LR  effects correspond 
to the operator F, and the viscosity to the operator M. The stability is decided 
by the MHD operator but the growth rates can be affected by FLR  effects and 
viscosity. Such viscous destabilization has already been proposed by Greene and 
Coppi [19] but not in the general form done here. Let us make estimates o f the 
reduction in MHD growth rates.

We know that the most dangerous MHD modes are nearly divergence-free. 
This means that
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but because o f and E ~ V ф,
В

.  r  
d iv  vA - —  ^

where r is the radial extent o f the mode, and R the large radius o f the torus.
On the other hand, one has Г ху ~  \Jr, so that the ion-ion term dominates the 
FLR  term if

# -  > ( - ) 2 6 V

For an ion temperature o f 1 keV, a magnetic field o f 30 kg and a density 
o f 1014 one has coci тц «  5 X 104.

Very roughly, we can associate the coefficient ‘a’ o f Eq. (6 ) with the ion-ion 
term in Eq. (10) by the relation

kT t
a ~  11 = 3 X 107

~  2 2 il. MR MR
l

i f  one takes R «  100 cm.

A full MHD growth rate 7 m HD ~\/icl is usually also o f this order. I f  for particular 
reasons (geometry, near-marginality condition) an MHD growth rate is not full, 
then a2 >  |c| and Eq. (7c) lead to the reduced growth rate:

n / \  ^  ! ci Re (to) -  —
¿1

(a) Tokamak case

The m = 1, n = 1 mode observed [20—22] in tokamaks near the magnetic 
axis has a rather small growth rate [23] (resistive kink or ideal internal kink) 
o f the order o f 10s to 106 s-1 compared with typical MHD growth, but still 
too high to explain the experiment. Viscosity leads to a reduced y  |c|/a ~  103 
to 104, which agrees with observation.

(b ) High-ß, 2 = 1  stellarator

The m = 2 mode has a typical MHD growth rate and for the previous plasma 
parameters we should obtain a2 b2 ** |c|, so that we would have the case (7e) 
with a small reduction in growth rate.
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This mode has rarely been observed [24] in the present experiments, and this 
is because toc¡ тц is two to three orders o f magnitude lower (T j ~  100 eV ) than 
calculated before, so that a2 <  b2 ~  |c|, which is the case o f Eq. (7d). The FLR  
stabilization dominates in this case.

The derivation o f the pressure tensor as given by Eqs (9 ) is done for 
t l/ L  <  1 and A Mpp <  L, with = Larmor radius, L = inhomogeneity length, 

Am fp = mean free path. For incompressible motion, the validity o f the pressure 
tensor can be extended to the domain Amfp ^  I-i but Am fp ^  Ец.

4. TWO-DIMENSIONAL PLASMAS WITH RESISTIVITY 
AND THE FULL-PRESSURE TENSOR

It is well known that resistivity leads [3] to new modes and one can expect 
a much more difficult behaviour. A t present only the two-dimensional case for 
straight plasmas can be solved, as we shall see.

The equilibrium is characterized [9] by

¿ o  =  ° о (Ф)

^ (12)
^  = e z x  Уф ( e z - B o )  ^

? d P 0

' V  "  -  5 Г

where z is the co-ordinate along the straight plasma, ф is the meridional 
magnetic flux, and 77 0 is the resistivity.

The meridional currents are assumed to be zero in order to have a static 
plasma in equilibrium, which is important for this kind o f formulation but not 
necessarily for the physical results.

After linearizing the equation o f motion we obtain

Po  I  + VP ]  + V • £ ( Ç )  -  i ,  x  Bo - *  B ,  = 0  ( И )

V * ¿  = 0 (14)

Aj + n0V x  V x  A ,  + n jÍ q  -  ¿  x  B o -  0  ( 1 5 )

= V x A j (16)

П, -  -  Ç • V no
(17)

Apart from the pressure tensor term, these equations are the same as in 
Ref. [9]. Equation (17) is valid as long as the heat conductivity is small enough. 
This will be discussed later.
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Restriction to two-dimensional perturbations leads to

Г = e x V U  = - V x e  U , В . = -  e x V A = V x e A 
—2 “ 2 —* —¿ ¿

i = -  e V2 A , V x j ,  = -  V (V  2A) x  e ,
-i i —z  *-1

where U and A  are two scalars: the stream function and the z-component o f the 
vector potential.

Taking the curl o f Eq. (13), we obtain

-  V - Po V Ü + ez -V x V  H(Vxez U) -  1^ ‘ V <V2A ) (18)

-  V x j  - V A  =  0
о

A + В • V U -  n V2 A + J (c  x V n ‘ V U )  = 0 (19)->o о о —z о

I f  V 2 A  is taken from Eq. (19) (r/0 Ф 0) and inserted in Eq. (18), we obtain the 
following system o f equations in matrix operatorial form:
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Apart from the V ¡3 term, Eq. (20) is identical with Eq. (17) o f Ref. [9]. 
Let us investigate the operator ez • V X V • П ( V X ez . . . ) . We know from the 
previous section and from Ref. [18] that V • П (j[) contains a terms which are 
positive definite operators and pure ß terms which are antisymmetric, but i f  £ 
is a curl and i f  V П (£)  is replaced by V X V • П (| ) the symmetry properties 
will not be changed, as the following equation shows:

J "  dx v • V x V • П (Vx e-¿ u)

The symmetry properties o f V - П are thus the same as ez • V X V • I I (V x e z . . . ) . 
Then Eq. (20) has the same character as Eq. (1 ) and the stability condition 
is given by the last matrix operator o f Eq. (20), which is the same as in Ref. [9]. 
This leads to the energy principle derived in [9] for zero pressure tensor and 
extended here to FLR  and ion-ion collisions:

A  simple application to tokamaks is the instability o f skin currents. I f  one 
localizes a test function with V U  finite at dJ0/di// >  0 and A  0, then 5w <  0. 
This mode is similar to the rippling mode in one-dimensional geometry [3].

Another application would be the stability o f configurations with 
stagnation points (such as doublets or for islands in tokamaks). This necessitates 
numerical calculations which are not easy to do because o f the stagnation point, 
but Eq. (21) at least allows the problem to be correctly formulated.

5. A L L  PERTURBATION WITH RESISTIVITY, VISCOSITY AND 
FLR  IN  THE TO KAM AK SCALING

/ V x e v • V • И (V x e u) dx 
—z = —z

I n  2
ÓW»/ dx ( -------- ° )  (£  x  • V U )

J d z

(21)

The energy principle o f Section 4 can be extended to three-dimensional 
perturbation i f  one goes to helical co-ordinates for the representation o f the
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equilibrium and perturbations and in the approximation o f the tokamak scaling 

K r ~ B 6/Bz « e .
The proof and calculations are given in Ref. [25]. The necessary and 

sufficient criterion is given by:

( u x e • VG) (u x V F • VG) dT4 _  —x о

dj
( -  -— ) ( u x  e • VG) F dT 

dr — —r

F L F dr (22)

where

В = f (r) u + u x V F (r)-о о —  —  о
Bj = f(r,u,t) u + u x V F(r,u,t) 
¿  = g(r,u,t) u + u x VG (r,u,t)

l e  + hr e.
—z —0

u = 1 9 -  hz

A  test function can always be found to make the system unstable as soon as 
dj0/dr Ф  0. This test function can be taken as:

F ** 0 and G concentrated on the side o f the resonance ( V F 0 = 0) at which 
the first integrand is negative,which is always possible. An estimate o f the 
growth rate can also be made as in Section 3.

This test function characterizes the rippling mode. A  similar test function 
was used by Furth [8] in the sheet-pinch geometry. The tearing mode test 
function is not localized but can, in principle, be found in the same way as in 
Ref. [8] and can be affected by cylindrical geometry (particularly the mode 
m = 1, n = 1). The FLR  effects and viscosity do not stabilize the resistive modes 
but can appreciably reduce the growth rates (see estimate in Section 3).

« . - /  ( - %  

* ’ /  

- /
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Stabilization o f the tearing mode alone seems possible [26]. To obtain it, 
one has to assume a non-fluctuating resistivity and shape the current density 
in a step-like form [26]. I f  the plasma has to be stable to all resistive modes 
(rippling included), then the current density as demonstrated by expression (22) 
has to be constant up to the boundary. Kadomtsev [27] came to this last result 
using Taylor’s invariant [12], which is discussed in the next section.

6. STAB IL ITY  OF FORCE-FREE FIELDS

Resistive force-free fields have to be time-dependent and have to be 
restricted to the class [28] j = XB with X = ct (see also Ref. [11]) and В = B0 
exp(-T?X2t).

The linearized equations o f motion around such solutions are:

J-l
x В Л B, x В 

—1 - о (23)

" A ,  + £  x  Bo = n i ,  + n , ^ (24)

В, = V x  A, , 1 ,  = V x  V x A, (25)

The investigation is restricted to the case X = et, f) =  ct consistent with t?i = 0 
and the gauge is chosen such that E = — À. The scalar product o f Eq. (23) with 
£  yields

p 0 £  = “  ( j  i ~ ' <Ai + i>

Integrating over the plasma volume limited by a perfectly conducting wall, we 
obtain

1  J L
2 Э t (pQÇ , ç ) + (v x Aj  , V x  A , )  -  ( A Aj , V X A j )

-n (26)

where

( a . O  = / v  d-r a ' £
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Let 5 W r  be defined as

6WR = ( V X  A j , V X  A , )  -  A ( A j , V x A , ) (27)

The variation o f 5 W r  leads to the following Euler eigenvalue equation:

V x V  x A,  -  AV x A a A j (28)

The variation o f the right-hand side o f Eq. (26) leads to

V x V  x B, - AV x В ßB (29)

The curl o f Eq. (28) is identical with Eq. (29). This means that any solution 
o f Eq. (29) verifying n'B!  = 0 at the boundary is also a solution o f Eq. (28) 
with n X A¡  = 0 at the boundary.

It follows that 5 W r  >  0 implies the negativeness o f the right-hand side 
o f Eq. (26). This means that S W r  >  0 is sufficient for stability with respect 
to MHD + resistive modes. This condition is found necessary and sufficient if  
one ignores resistivity and uses instead Taylor’s hypothesis o f a global invariant 
[12, 29]. This result is somewhat to be expected i f  one considers Woltjer’s [30] 
proof that X = ct force-free fields represent the state o f minimal energy in a 
closed system.

The important practical question for fusion plasmas is to know how much 
one can deviate [31] from X = ct force-free fields without appreciably affecting 
the gross stability properties and without appreciably diminishing the confinement 
time. This question might require an understanding o f the non-linear problem, 
which would exceed the scope o f this paper.

7. DISCUSSION AND  CONCLUSION

The method pursued in this paper allows statements about stability without 
going to the solution o f eigenmodes. This is only possible i f  the representation 
variable f  in which the linearized equations o f motion are o f the same type as 
Eq. (1 ) can be found. This depends, o f course, on the physical equations used.

Effects such as thermal conductivity affect the symmetry properties 
o f the operators o f Eqs (1 ) and (20). In fact, Ohm’s law in hot plasmas 
is not known; it can be affected by trapped particles in toroidal geometry and 
generally by turbulence. Even cylindrical geometry presents difficulties: energy



334 TASSO

principle (22) would not have been possible without making a tokamak expansion.
Answers to these questions can be found as follows:

( 1 ) One can restrict the investigation to a class o f resistive modes (essentially 
the ‘tearing’ modes) as done in, for example, Refs [6] and [26], which 
generally leads to optimistic results. But then it remains for us to understand 
the meaning o f the restriction in the stable case and to know how the growth 
rates are affected by the ignored physical terms (FLR , viscosity, etc.) in the 
unstable case.

(2 ) This dilemma may require general stability conditions to be found as in, 
for example, Ref. [10] and patient searching for the representation f  i f  it 
exists, for which the linearized physical equations become o f the type o f
Eq. (1). This is demonstrated here for some non-ideal effects and geometries.

(3 ) The hardest way, but the nearest to real plasmas, is to develop methods 
dealing with the stability o f equations more general than Eq. (1), particularly 
those for which Q is not symmetric.
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Abstract

LINEAR AND NON-LINEAR CALCULATIONS OF THE TEARING MODE.
The results are presented of the application of a two-dimensional, non-linear MHD 

computer code to the tearing mode. For the case of the sheet pinch, linear growth rates are 
obtained and non-linear behaviour investigated. In addition, the linear and non-linear behaviour 
of the mode is studied for the case when two singular surfaces are in close proximity. For this 
double tearing mode, it is found that the linear growth rate is greatly enhanced over that of 
the single tearing mode. The mode is followed into the non-linear regime and is found to result 
in magnetic field configurations which could lead to enhanced diffusion. It is found that 
approximately 10% of the energy released goes into kinetic energy.

i. INTRODUCTION

The existence of sheared or reversed magnetic fields in many recent 

controlled fusion devices has led to renewed interest in the tearing 

mode, one of a class of finite-resistivity instabilities which were first 

studied in detail Ъу Furth, Killeen, and Rosenbluth [l]. In that work 

(henceforth referred to as FKR) a dispersion relation is derived for a 

sheet pinch, and growth rates are obtained as functions of wavelength 

and magnetic Reynolds number S = t^/t^. This analytical work has been 

extended to tokamak geometries [ 2 , 3 ] ,  and more recently there have been 

attempts to understand the non-linear aspects of this mode [^,5,6].

* Work performed under the auspices of USERDA, Contract No. W-7405-Eng-48.
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In addition, the tearing mode has been studied for several years in 

connection with the problem of solar flares [7,8,9], where it has been 

advanced as a candidate for the onset of the flare event. Also, there 

is currently considerable interest in the double-tearing mode [lO,ll], 

which can arise when two singular (к/13 = О) surfaces are in close 

proximity. The resulting interaction can lead to enhanced cross-field 

diffusion and field annihilation.

Concurrently, the rise in speed and memory size of computers has 

made feasible the solution of more and more complex problems by numerical, 

rather than analytical, means. For example, ideal MHD instabilities are 

now being studied as initial value problems in more than one space 

dimension [12,13]. In this way the equations need only be modified for 

physical, not analytical, reasons, and non-linearities and complex 

geometries can be treated.

This paper describes the application of this approach to the study 

of the tearing mode. The problem here is more complex than for ideal 

MHD, as we now have phenomena occurring on two often widely separated 

time scales: the hydromagnetic time and the resistive diffusion time.

Thus, to make the problem computationally realizable, implicit methods 

should be used. This was first done by Killeen [l**], who obtained growth 

rates by solving the linearized, Fourier-decomposed equations in one 

space dimension. This work was extended for cylindrical geometries by 

Dibiase [l5], who included the effects of compressibility, viscosity and 

thermal conductivity. Recently, non-linear multi-dimensional studies 

have appeared [l6]. However, these are tailored to special geometries 

and solve reduced sets of equations. In the present work we apply a more 

primitive model: the resistive MHD equations in two space dimensions.

No assumptions about the ordering of terms are made, and the equations 

are written in orthogonal curvilinear coordinates so that geometrical 

effects can be accounted for in the metric.
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In section 2 of this paper we describe the mathematical model and 

display the equations to be solved. Section 3 is a brief discussion of 

some computational techniques employed by the numerical model. In section 

1* we present results obtained by applying the code to a sheet pinch. We 

find linear growth rates for the tearing mode in good agreement with 

previous work [l,lU], and follow the mode into the non-linear regime, 

where saturation is observed. The remainder of the paper deals with the 

double tearing instability. In section 5 we solve the linearized resistive 

MHD equations, as derived in [lU], with an appropriate model for the zero- 

order magnetic field. We obtain linear growth rates as a function of the 

magnetic Reynolds number and of the separation distance between the singular 

surfaces. The eigenfunctions are also found. We show that the growth rates 

can be greatly enhanced over those of the ordinary tearing mode for the 

same magnetic shear. In section 6 we display the non-linear behavior 

of this mode. We show that the interaction between the adjacent singular 

surfaces leads to enhanced vortex flow and magnetic field distortion in 

the region between the surfaces.
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2. MATHEMATICAL MODEL

The equations appropriate for the description of low-frequency 

phenomena in a conducting fluid are the MHD equations, which usually 

appear in the formt

ЭВ 2
—  = Vx(vxB - VxB) (1)

3-  1 P ^  + PV'Vv = - V .g  + j—  (V xB) x  В ( 2 )

! t  =  -  V ' ( p ^ (3)
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= - pV"V - V*(pev - kVT)

с 2 2+ л(]^) (VxB) - VY:Vv ( И

along with the equation of state p = pT. Here, e = кТ/пк(у-1) is the 

internal energy per unit mass, n is the resistivity, к is the thermal 

conductivity, v is the viscosity, and g is the stress tensor defined by

g = p g -v у ^

where V, the viscous stress tensor, is given by

formulation assumes a collisional plasma of equal ion and electron 

temperatures, the generalization to the anisotropic case is well 

known, and in this paper we shall deal only with equation (l) thru (^).

For computational purposes, it is preferable to recast the 

equations in conservation form [l?]. In terms of the dimensionless 

quantities

x' = x/a , t' = t/t„ , B' = B/B— — n — — о

v' = v/vA , p' = p/pQ , Р' = P/PQ

T' = T/T , u' = u/u , n' = n/nО О О

к' = к/к , v ' = v/vO 0

equations (l-U) can be combined to yield [l8]

Y = I  V • v J -(Vv + Vv+) (6)

We use the notation ( to designate the transpose. While this

ЭВ’ ,
— —  = vx(v'xB' - ^  VxB' ) (7)

Э ( p v  ' ) (Cp ' v ' v '  + îs(p'+B' 2 )J -  B'B' -  g- ' ï ' )3t* V • (8 )



= - v • ( p ' v 1) (9 )

|^- = - V • ( (u' + p' )v- + (B’ -VB’ - VB* -B’ ) (10)

+ (B’2I - 2B’B ’ ) • v ’ - ^ - V ’-v’ - VT1

CALCULATIONS OF TEARING MODE 341

which express the conservation of magnetic flux, momentum, mass and
t g  » 2energy. The quantity u' = pv + В + p'/(y-l) is the total energy

density of the fluid. In the normalization above, subscripts ( ) refer

to characteristic values, "a" is a characteristic length, v^ = Б^ЛтерТ”

is the Alfven velocity, and t„ = a/v. is the hydromagnetic (or Alfven)
H A

transit time. The normalization of the thermodynamic properties is 

chosen such that

u = p = B2/8it = %p v2 (ll)о о о о А

The nondimensional numbers R, S and K appearing in (7) thru (10) are

the hydrodynamic, magnetic, and thermal Reynolds numbers, defined as the

ratios of the corresponding diffusion times to the hydromagnetic transit

time, i.e.

R = V i s c ^ H  = poaVA/vo 

S = tR/tH = U,ravA/c2no

K = tTHERM/,tH = poaVA/,|Co 

where t . , t , and tmt_„,, are the viscous, resistive and thermal
V1SC n 1пЫ\М

diffusion times, respectively.

Equation (7) can also be written as 

32.’ / , \
—  = V •( B'v' - v'B' + (VB' - VB1 ) ) (12)

which emphasizes the flux-divergence form.

Equations (7), (8), (9) and (10), along with the equation of state 

and the definition of u' , define a set of 8 equations in 8 unknowns:
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three components of the magnetic flux density B' , three components of 

the momentum density p'v', the mass density, and the total energy 

density. In orthogonal curvilinear coordinates the two-dimensional 

form of the equations is

ir  = hq { b3(viVv2Bi) +1 ïïjiç ( hq (hiV - w ) }
(13)

= hJïÇ I h3(v2Bl"VlB2) + S hjh2 ( Эхх th2B2) 3x2 (hl V ) }

(1U)

! f i .  <L_
3t hxh2 3xx

1 3

hlh2 Эх2

h2(v3Bl_VlB3) + S hxh3 L, (h3B3)

hi t' v3B2~v2B3) + s ÿ Ç  h q  (h3B3) (15)

8(pv1 )

at - ï ï ^ | l ^ ( h2h3(P V B? 0  + fe¡(hlh3(pV l V Bl V )

3h 3h

+ h3 Si: (pvi V BiV  - h3 d r  <"т2-вг>

3(pv2)
I t  =

о 2
-  h2 (pv3-B3}

1  1 3 , _ . _2v
2 h^ 3 ^  (P+B >

hlh2h3 j^3xx |̂ l2h3(pVlV2-BlB2) + 

3h2 3h „

+ h3 3̂ 4pVlV2-BlB2)-h3 3̂ pVl " V

hl h3(pV2-B2H

(16)

(17)
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3(pv3) x

3t hlh2h 3 ) 3xl h2h3(PVXV3”BlB3} + 8x7 hlh3(pV2 V B2B3)

3h 3h

+ h2 3 ^ pviv3-BiB3)+hi (1 8 )

l £  = 3t (19)

and

3u
3t

8 x ^ h2B2  ̂ ^ b l 8! 1

lh3w 3 4  [h-

2n f  1 r Г 3 ,
S jÿy^l [ i ^ n:

(u+p)v2 + ( ) v2-2B2(B1vl+B3v3)

2B2 ) 3 ^ hl Bl }J "  h ^ ® 3  3 ^ h3B3]

We have assumed that an element of arc length can be written
2 2 2 2 2 2 2 ds = h^dx^+h^dx^+h^dx^, that there is no x^ dependence, and have

dropped the primed notation. In addition, we have set v = к = 0

to conform with results to be presented in later sections.

(20)

3. COMPUTATIONAL TECHNIQUES

The set of equations (13) thru (20), together with the appropriate 

boundary and initial conditions, define an initial value problem which 

we solve by finite difference techniques on an Eulerian mesh. The 

spatial differencing is fully conservative on a variably zoned grid 

with densities defined at grid points and fluxes at half grid points.



First derivatives are differenced as
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| 3 F  j _  F i + l / 2 ~ F i - l / 2  _  F i + l ~ F i - l

V3xlj i  "  X1 i + 1  /2 _ X 1 i - 1  /2  "  Л +Х 1 + Л - Х1

( 21)

where E +1^2=(Fi+1+Fi )/2, and i+ and Л are the forward and backward 

difference operators at x^. Second derivatives become

3 _  / 3F = _________ 2___________

Эх1 \ 3xJ i j &-Xl ai+l/2,j^i+l,J-Fij)

- A+X]L a..1-1/2,j (Fij'Fi-l,j)

while the two types of mixed derivatives are differenced as

_Э
Эх.i B O i j  ° ai+1/2»J (Fi+l,J+l+Fl,J+l_F±+l,J-i

" V l / 2 , j (Fi , j +1+Fi-1, j +l"Fi, j -l"Fi-l, j -l)

and

2 \!3xl.’a~ ^  C ^i,J+l/2 (ji+1,j+l+Fi+l,j"Fi-1,j + r Fi-l,

»j-l/2 (Fi+l,j+Fi+l,j-l"Fi-l,J~Fi-l,j-l)- a .
i .

(22)

(23)

(2U)

where С = (û+x^ + A x^) ^ (û+xg + ^ X2  ̂ ^  -^e temporal differencing is

Alternating Direction Implicit [19]. The mixed derivatives (23) and (2U) 

are always placed at the 'old' time step. This differs from the method 

used by Killeen and Marx [20] and Lindemuth [21], but it is conservative 

at each half step.

The resulting difference equations are non-linear, and are solved 

Ъу iterating the solution several times over a time step. Since the



momenta are taken as the dependent variables, all velocities appearing 

in the difference equations are considered known, and their values at 

the appropriate time level from the most recent iteration are used. The 

boundary points are advanced by an implicit algorithm which assures total 

conservation on the difference mesh.

U. THE TEARING MODE IN A SHEET PINCH

The computer code MHDG, which has been described briefly in the

previous sections, has been used to study the evolution of the tearing

mode in a sheet pinch. The purpose of the study is twofold: l) to serve

as a check on the code by comparison with the analytic results of FKR;

and 2) to display the non-linear behavior of the mode.

In our model of the sheet pinch, the zero-order magnetic field is 

in the x-direction and reverses at the singular surface y=0. The exact 

form of this field is

Bx = tanh £  y (25)

which results in a current sheet given by

Jz= - f  sech2 f  y (26)

The pressure, which is determined from the zero-order force balance 

condition

p + B2 = ß + 1 (27)

is also peaked at the singular surface, and since we assume that the

plasma is initially of uniform density, there is a corresponding peak
2in temperature. In ( 27 ), ß = 8тгрм/Вш is the usual plasma beta, with

Pœ and Bœ referring to values far from the current sheet.

We place conducting walls at y = ±y and assume a periodic structurew

in the x-direction. The scale length in the y-direction is chosen to be
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the half-width of the current sheet, while that in the x-direction is 

taken as the wavelength of the imposed perturbation. The resulting

addition, we have set v = к = 0 to avoid unnecessary complications.

The perturbation quantities are obtained from a linear code,

RIPPLE3, which solves the linearized equations described in FKR as an 

initial value problem [lU], These perturbation quantities, along with 

the equilibrium described above, constitute the initial conditions for 

the problem.

Before continuing, it should be noted that an objection could be 

raised to using the MHD model in a region where the magnetic field vanishes 

(in this case near the singular surface) due to the large gyroradius of 

the particles there. This problem has been studied by Furth [22] and 

Drake and Lee [23], who conclude that, in the collisional regime where 

our equations are valid, kinetic and fluid theories yield comparable 

results for this mode.

Several cases were run with initial perturbations and time step 

of small enough magnitude to assure that the mode was in the linear regime. 

Other parameters of significance were у = 5, ct=.5, ß = l. ^w°
V

difrerent models for resistivity were used: l) an analytic model,

n = cosh2 2y; and 2) the Spitzer formula, n = T We define the

growth rate to be

1 âM. ( 28)
p Дф dt

where Аф is the amplitude of the reconnected flux at the singular 

surface; i.e. with

as the flux at the singular surface as a function of x, we have Дф =

cartesian scale factors are h^ = а/2тг, hg = h = 1, where а = ka. In

(29)

rmax m m
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Resistivity: л = cosh^ j  у

,-1 a = 1/2

p = 0 .8 8  S
CL/D « _ c"0*6FKR p = S 

‘10,-4
10'|2 103 104 

M agnetic R eyn old s num ber S  = t R/ tH

10'i5

F IG .l .  Linear growth rate versus magnetic Reynolds number for the sheet pinch.

This growth rate was monitored, as a function of time and was found to be

constant to U signficant figures for 50 time steps. This value, as a

function of S, the magnetic Reynolds number, was then compared with results

obtained from the REPPLE3 code and those predicted by the linear analysis

of FKR, and are presented in figure 1. In studying these results it should

be noted that, in the present work, time is measured in units of the Alfvén

transit time, while, in FKR,time is measured in units of the resistive
2/5diffusion time. Thus the usual FKR formula p=wtp = S must be converted

to p̂ (i)t„ = S This normalization more clearly displays the decreaseH

in growth rate with decreasing resistivity (increasing S).

We find that the linear code, the non-linear code, and F K R  agree

quite well over a wide range of magnetic Iteynolds numbers, as seen in

Fig. 1 for the analytic resistivity. Similar results were obtained

for the Spitzer model. Note that the three sets of results are in

better agreement for low S than for high S. It is felt that this is

due to the computational difficulties encountered as the width of the

singular layer shrinks with increasing S. Typical initial profiles
2 5are shown in figures 2 and 3 for S = 10 and S = 10 . We see that the 

momentum eigenfunctions (pv^Epv^, pv^spv^) become quite localized near 

у = 0 for large S, requiring finer and finer resolution of this region.
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I I

- 4 - 2  0 2
Normalized distance

- 4 - 2  0 2 4
Normalized distance

F IG .2 . Sheet p inch  e igen function s  f o r  S  = 102.

All the ETPPLE3 results were obtained on a uniform mesh of 501 points 
in y, giving Ду = .02. The MHDG code was run with 32 points in x, and 

101 points in y. The x-mesh was uniform, and the y-mesh was variable, 

with Ay = .02 near the singular surface and increasing away from it. 

While this resolution is suitable for lower values of S, it may Ъе too 
coarse to accurately resolve the singular region for high S.

Next, the size of the perturbation and timestep was increased 

and the mode was allowed to run into the non-linear regime. The
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F IG .3 . S heet p in ch  e igen fu n ction s  f o r  S =  10 .

reconnected flux, Дф, as a function of time for the case S = 10 is

shown in figure !*. This mode is found to grow exponentially for some
time and then begins to saturate. The growth rate as a function of

time is shown in figure 5- Figure 6 shows the magnetic flux surfaces
2for the S = 10 case after 10 Alfvén transit times. This places it 

well into the non-linear region. The magnetic island is evident. In 

figure 7 we show the corresponding velocity field. Note the tight vortex 

motion which has been set up in the vicinity of the singular surface.
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т = (t-t0)/tH
F IG . 4. R e co n n e cte d  f lu x  versus tim e  f o r  the sheet pinch.

10

x = (t-tQ)/tH
F IG . 5. G row th  rate versus tim e  f o r  the sheet p inch.

>» 0

-2

0 0.2 0.4 0.6 0.8 1.0
x

F IG . 6. M a gn e tic  f lu x  surfaces, S = 10 , t  =  1 O tjj.
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F IG . 7. V e lo c ity  f ie ld , S =  1 0 1, t = lO t f j .

5 . L IN EA R  GROWTH OF THE DOUBLE TEARING  MODE

The l i n e a r i z e d  r e s i s t i v e  MHD e q u a t io n s  i n  C a r t e s ia n  c o o r d in a t e s  

a s  d e r iv e d  i n  FKR c a n  b e  w r i t t e n  i n  t h e  fo rm

3£
3 t

-FW + л

a 2S2 3 t
lw

sfw

эу2

3y

-  ahí = F
Г 2

Эу
F '  *ф

(3 0 )

(3 1 )

We h a v e  t a k e n  t h e  u s u a l  FKR n o r m a l i z a t io n  an d  h a v e  n o t  F o u r ie r - a n a ly s e d  

i n  t im e .  The  q u a n t i t i e s  i|), W an d  F  a r e  t h e  n o n - d im e n s io n a l f i r s t - o r d e r  

у -c o m p o n e n t o f  m a g n e t ic  f i e l d ,  f i r s t - o r d e r  у -c o m p o n e n t o f  v e l o c i t y ,  and  

z e r o - o r d e r  x - c o m p o n e n t o f  m a g n e t ic  f i e l d ,  r e s p e c t i v e l y .  T he  p a ra m e te r  

a  = k a  i s  a  n o n d im e n s io n a l w ave num ber and  S i s  t h e  m a g n e t ic  R e y n o ld s  num ber. 

A  p a r t i c u l a r  c h o ic e  o f  t h e  f u n c t i o n  F  d e t e rm in e s  t h e  b a c k g ro u n d  c o n f i g u r a t i o n  

f ro m  w h ic h  u n s t a b le  m odes may a r i s e .

K i l l e e n  [ lU ] h a s  n u m e r i c a l l y  s o lv e d  t h e s e  e q u a t io n s  a s  a n  i n i t i a l  

v a lu e  p r o b le m  w i t h  e q u i l i b r i a  a p p r o p r ia t e  t o  a  s i n g l e  t e a r i n g  mode
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(i.e. one reversal of the background, field), and has obtained growth 

rates p = (дф/ЭЬ)/ф in good agreement with the analytic work presented 

in FKR. In the present work we choose a form of F relevant to the double 

tearing mode, i.e. two reversals of the background field. Our particular 
choice is

which has the property that F = 0 at y = ±yg> F = -F(0) at у = 0,

and F + 1 as y ■» i «. We place conducting walls at y = ± y and solvew

equations (30,31) as an initial value problem, i.e. we specify an 

initial perturbation and advance the solution forward in time until 

exponentially growing eigenmodes evolve.

For the results to be presented here, we have chosen F(0) such 

as to make F'(y ) (the shear) the same for all runs. The particular 

value chosen was F'(y ) = if/2 to allow for easy comparison with the 

results presented in section 5. The conducting walls were placed at 

yw = ±5 and we have set a = .5. Growth rates were then obtained as 

functions of S and y , the separation of the singular surfaces. We
_  pcj,

find that for small separation (y = .25), p = .26 S , which is

close to ideal MHD time scales, while for larger separation (y = .7),s
-Л7p = .97 S . These are to be compared with the single tearing mode 

results p = .75 S ~ ' ^ 2 as obtained numerically, and p = S-'̂  as derived 

in FKR. We see that the proximity of two singular surfaces can greatly 

enhance the growth rate of the tearing mode.
In figure 8 we plot growth rate as a function of separation distance 

for various values of magnetic Reynolds number. We see that the growth 

rates peak at smaller values of yg for larger values of S. This is to 

be expected in light of the reduced size of the singular layer for higher

sech 2. (32)



CALCULATIONS OF TEARING MODE 353

*s

FIG.8. Linear growth rate p versus y s, the separation o f  the singular surfaces, fo r  the double 
tearing mode.

ys

FIG. 9. The exponent z in p ~  S z versus ys .

S modes. In figure 9 we plot the exponent z in p ~ S-z as a function of 

y . Recalling that z 0 implies that ш ~ l/t„(i.e. growth on the MHD
S  n

time scale) we again see the enhanced growth rate for smaller separation

distance. The linear behavior of the function z(yg) as displayed in this

figure cannot be continued for indefinitely large у , since for у -*■ <*>s s
we expect to regain the single layer results, z = .5̂ 2.
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FIG. 10. Linear eigenfunction o f  the double tearing mode for :
(a) S = 1 0 1, ys = 0.25 (c) S = 102, ys = 0.7
(b) S = 1 0 s, ys = 0.25 (d) S= 10s, ys = 0.7
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x

FIG. 11. Flux surfaces in region between singular surfaces fo r  the double tearing mode.
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x

FIG. 12. Velocity field  corresponding to Fig. 11. Note that the singular surfaces are at y = ±0.5 
and the conducting walls are at y = ±5.



In figure 10 we display the linear eigenfunctions for various 

values of S and y . Note that the у-components of both the velocity 

and the magnetic field are large over the entire region between the 

singular surfaces. Thus the perturbation is not limited to the singular 

layer about each surface, but is more evenly distributed. This increased 

у-directed flow convects more magnetic field into the reconnection region 

of each singular surface, thus enhancing the growth rate.

6. NONLINEAR BEHAVIOR OF THE DOUBLE TEARING MODE

We use the zero-order equilibrium and the eigenfunctions obtained 

from the linear code as initial conditions and follow the behavior of 

the mode into the non-linear regime. We choose S = 100, y^ = .5 due 

to its large growth rate. We find that the magnetic islands on the 

adjacent singular surfaces grow toward one another, thus creating an 

extended region of у-directed magnetic field between the two surfaces.

This could account for enhanced diffusion in the direction normal to the 

zero-order field (i.e. in the y-direction). This behavior of the flux 

surfaces is shown in figure 11.

The corresponding velocity field is shown in figure 12. We note 

the extended vortex motion, the region between the surfaces. As mentioned 

in section 5, this enhanced cross-field flow causes stronger convection 

of magnetic field into the reconnection regions and could account for an 

increased rate of field annihilation.

In figure 13 we plot the у-component of the magnetic field at a

point half-way between the singular surfaces as a function of time.

Note the initial exponential growth (at a rate in agreement with the 

linear results) followed by non-linear saturation. Figure lit shows the 

kinetic energy in the entire plasma as a function of time, and we note 

that it is still growing approximately exponentially, well after B^.(0)
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T (t - tQ)tH

FIG. 13. By(0) versus time.

t/tH

FIG. 14. K inetic energy versus time.



has saturated^ This could Ъё due to the fact that reconnection is still 

taking place near each singular surface, releasing magnetic energy into 

thermal and kinetic energy long after the field at the mid-plane has 

reached its maximum value. We find that after il* AlfYén transit times 

(the approximate time at which B^(0) is completely quenched), It .17% of 

the initial magnetic energy has Ъееп dissipated. Of that, 10.1% has 

gone into kinetic energy, and 89.9? into thermal energy.

7. CONCLUSIONS
We have obtained good agreement between the results of our non-linear 

code and previous linear numerical and analytic results for the case of 

the sheet pinch. We have followed the tearing mode for long times and 

have observed non-linear saturation. For the case of the double tearing 

mode, we have found that the linear growth rate can be greatly enhanced 

when two singular surfaces are in close proximity. This may be due to 

strong convection of field into the reconnection region of each singular 

surface. The non-linear interaction of the two surfaces leads to the 

evolution of magnetic field mainly in a direction normal to the original 

equilibrium field. This could account for enhanced cross-field diffusion. 

We also find that ~10% of the energy released goes into directed plasma 

motion.
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Abstract

ADIABATIC AND NON-ADIABATIC ELEC TRO N  O SCILLA TIO N S IN A STA TIC  ELEC TRIC  
FIE LD .

The influence o f a static electric field on the oscillations o f a one-dimensional stream o f 
electrons is investigated. In the weak-field limit the oscillations are adiabatic and m ode coupling 
is negligible but becom es significant if  the field is stronger. The latter effect is believed to be 
o f  im portance for the stability o f, e.g., potential double layers.

1. Introduction. Recent developments in plasma physics have shown that 

static electric fields are involved in quite a few plasma phenomena 

where the classical resistivity is essentially zero. These phenomena 

include e.g. parallel fields in magnetic mirrors [1], plasma beam-curved 

magnetic field interaction experiments [2], potential double layers [3] 

and turbulent resistivity [4]. As regards the further properties of 

such plasmas very little is known. Specifically, the difficult problem 

of stability of general BGK-equilibria, of which the one-dimensional 

double layers form a subclass, is as yet unsolved. The aim of the 

following analysis is to demonstrate a few basic features of the inter

action between a stream of electrons and a static electric field, which 

might have consequences for the stability problem mentioned.

2. Basic equations. Neglecting the thermal spread, the following

equations describe the motion of the electron stream in the electrostatic

field E0 (x)=-d<|>/dx:

3n 4. 3 („.n n 3v , 3v _ eE 3E1 _ enl
3t 3x(nv) °* 9t V Эх ~ me * 3x '
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n=nQ(x)+n1(x,t) is the electron density, v=vQ(x)+v^(x,t) the velocity, and

E=Eq (x )+E-|(x,t) the electric field. In the stationary state it follows

that the electron density and velocity are nR/G(x) and vRG(x), respect-
2 1/?

ively, where G(x) = [l+2e<j>(x)/meVg ] , and nß and vß denote the density

and velocity at points where ф(х)=0. It is straightforward to show [5] 

that the linearized versions of the equations above give the following 

equation for (x,t) :

v 21- 
VB Эх

о ЭЕ1П 0 Э2Ет ЭЕ, Э2Е1
G (x)- 1

dt"
Эх +2v Bg 2(x )3Ï3Ï +2v bG(x )G'(x )1 ^  + G(x)— ¿  +ш в 2Е1=0 (1]

2 1 /2
where Wg=(e ng/e0me ) • Furthermore, the energy conservation equation 

3W^/3t+3F^/3x=0 associated with eq. (1) involves the following expressions 

for the energy density and flux, respectively:

W-| (x,t)= ^ oloB-2G(x)(-^-)2- k v BV 2^ ) ( ^  k El2 (2a)

V b“ b' 2g2( x> ( ¥ ) Z <2b>

In the following we will use two different approaches to the equation.

2 . ] _ Lagrangian_descHption^ We take a certain point, fixed in the 

stream (initially at x=xQ ) and describe the field at this point as a 

function of x. This field we denote by E-|(x;x ). Using the expression 

for the stationary electron trajectories, it is then easily shown [5] 

that eq. (1) turns into

VB dx[G ^ d x ^ l  (х;хо)]+шВ M x ;x o ) 0 (3)

Moreover, the energy density, kinetic plus potential, of the electron 

oscillations, as observed in the moving coordinate system, is given by

2

W i(x;x0 )= + k Ei 2( x ;xo>

2 .2._ Coupled mode_des£npt^ion^ We let E,(x,t) be given by a(x)exp(-iwt) 

and define the normal modes a+(x) according to

a (x)=(ik_a-da/dx)/(ik -ik,)Z j. i i
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where k+(x) = [io+wBG (x)]/vßG(x) are the wave numbers for the fast 

(pos.energy) and slow (neg.energy) waves. By use of eq. (1) we then 

find that

_1 / 9

da±/dx-ik±a±= ^G'(x)G'1(x)(a_-a± ) (5)

It is convenient to introduce the normal mode 'amplitudes' A+ (x) defined 

by

A+(x)=a+ (x)G3/4(x)exp -i/k± (u)du
о

( 6 )

in which case the (averaged) energy flux (2b) for the fast and slow
О

modes are proportional to ±|A+(x)| , respectively, and the total flux is

<Fi >= K “vb“b’ 1( |a+(x)|2' |a- (x)|2)

Moreover, we introduce the dimensionless parameter

AB(x)=4ireEn (x)/movR(x)uR(x)e B' ' Bv (7)

where vß(x) and a>g(x) denote local values of the streaming velocity and 

plasma frequency, respectively, and the variable

y=a)B(2TTVB )'1/G'3/2(u)du

Then the coupled mode equations (5) can be written

dA±/dy=- -gXB(y)exp ±4тпу ( 8 )

The parameter Xß , that essentially determines the strength of the 

coupling, can be given a simple physical interpretation, namely the 

relative change in kinetic energy, during one plasma period, for the 

streaming electrons.

3. Weak field. When |Xg(x)|<< 1 the mode coupling is clearly negligible,

and the situation is rather similar to the field-free case. However,
2

in order to conserve the energy flux ±|A+ (x)| , the amplitude of the
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oscillations must vary slowly according to |a+ (x) |~G"^4 (x ) , by virtue 

of (6). This result can be given another physical explanation by use of 

the Lagrangian description in sec. 2.1. One observes that the expression

(4) for the energy density can be given the form of a Hamiltonian for a 

harmonic oscillator, i.e.

W1(x;x0 )=p2/2M(x)+ ÿ ( x ) Q 2(x)q2 (9)

where

q=El(x;xo b  p=EovB ШВ G (x hïxEl (x;xo)

M(x)=£0vB2ioB'2G3(x), n(x)=uBvB" V 3/2(x)

Moreover, Hamilton's equations resulting from (9) are equivalent to 

eq. (3). Thus, for sufficiently slow variation of M(x) and n(x), we can 

directly exploit the result from classical mechanics, which states that 

the quantity i.e.

Q=W1(x;xo )G3/2(x) (10)

is an adiabatic invariant. It is easy to show that the conditions for
p

slow variation, 2tt|dfi/dx|<<f2 and 2tt|dM/dx|<<Mi2, can equivalently be formu

lated I Ag(x) I « 1 , Xg given by (7). If adiabatic conditions prevail, the 

energy density is locally proportional to the square of the amplitude 

a(x;xQ ), so that the invariance of Q requires a(x;xQ )~G 3^(x), as we found 

before. This result explains some earlier calculations on electron 

oscillations on accelerated streams, e.g. [61.

4. Strong field. If the adiabatic condition |Xg(x)|<< 1 is not fulfilled, 

the invariant (10) is in general violated, and at the same time mode 

coupling becomes significant. We now examine the details of the coupling 

in two special cases. (A similar treatment, with application to micro

wave tubes, has been given in [7].)

4.1. Constant Xg potential. Such a potential can be realized by 

choosing

ф (x ) =me v B 2 ( 1 - 3 cob Xb x /8 ttvb ) 4 / 3 -1 /2e
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In this case eqs (8) are easily solved, and the solution, with 

A_(0)=0, is:

-2 . _ 2 ~
XB<XB :|А+ (у)/А+ (°)Г=1+(е -l)sin 2itßy

Хв=ХвС:|А+(у)/А+(0)| 2= Н 4 Л 2

XB>XBC: |A+(y)/A+(0) |2=l + (ß 2+l )s inh22irßy

where Ag = 16тт/ЗкЛ7, 8= H"(Ag/Xg )

IA+(y)/A+ (0)I

C>2,1/2

In fig- 1,IA+ (y)/A+(0)I 

is shown for a few values of

V

FIG .l. Energy flux fo r  fast beam mode in a potential 
with XR = constant.

If ^B<XB , the energy flux 

is oscillating between the fast
О

and slow modes (|A_(y)| =

IA+ (y)I2-IA+(0)I2), and the

amplitude of the oscillations
г

increases with Xß. If Xg>Xß , 
the energy flux increases expo

nentially, and the situation is 

similar to an ordinary convec

tive instability. The criti

cal accelerating field above 

which this instability occurs 

is

Eo =4mevBa)B/,3e

£onstant_fi_eJd^ Choosing $(x)=-EQx,we can write Xg(y} = XB 0 ^ 1_ 7 XB0y )- 

In this case the solution to the coupled mode eqs (8) can be given in 

terms of Bessel functions. With z=l- дХВфУ, one finds that (again 

choosing A_(y=0)=0)

|A+(z)/A+(l)|2^ 202z{[Y1(0 )J1(az) +

+Y2(a)J2(az)-J-| (a)Y-|(az)-J2(a)Y2(az)

+[Y1(0 }J2(az)-Y2(a)J1(az)-J1(a)Y2(az) + 

121+J2(a)Y1(oz) j/16



366 WAHLBERG

l y z ) l  |A+U)/A+(1 )|2

FIG. 2. Energy flux fo r  fast beam mode, and local 
XB in a constant electric field.

In fig. 2 this solution is shown 

together with XB (z)=XBQ/z. a is 

3/2 in the figure, which means
Г

that I^в0 1 ^B ' Thus z¿l cor

responds to the unstable range
С

XgiÀg found in sec. 4.1., 

whereas z>l corresponds to
С

Хв<хв • w^ere tte oscillating 
character of the energy flux 

is observed, and the amplitude 

of the oscillations decreases 

together with

where а=8тт/1 xß01.

5. Stability discussion. It is well known that certain microinstabilities 

can be analysed within the framework of coupled mode theory. For instance, 

it is possible to interpret the ordinary two-stream instability as being 

caused by the coupling between the negative energy wave in the stream and 

the positive energy wave in the plasma [8]. However, if the plasma is 

penetrated by an electric field, maintained e.g. by one of the mechanisms 

mentioned in sec. 1, it would of course be necessary to include the 

additional mode coupling that we have dealt with here in a stability

analysis. As a particular 

example let us take the double 

layer [3]. In fig. 3 a sche

matic picture of the phase space 

distribution of electrons for a 

typical layer is shown. The po

tential (not shown) is assumed 

to increase monotonically from 

a constant value for x<0 to 

another constant value for 

х>Дх. The upper shaded region 

shows a population of beam

like accelerated electrons, and

FIG.3. Schematic picture o f  phase-space distribution the lower region a population of

o f  electrons in a typical double layer. thermal electrons, of which some
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are reflected by the potential. It is experimentally observed [3] that the 

critical drift velocity between the electrons and ions, above which the layer 

is formed, is of the order of the electron thermal velocity. Thus, in order 

to make an order of magnitude estimate of the parameter xß (7), let us use 
1 /2

VB ' ^ e  ^me^ ’ 9ives a minimum value for the drift velocity of the
accelerated electron component. Moreover, the thickness of the layer is ob

served [3] to be of the order of a few Debye lengths, and we can, for convenience,

use the estimate En ~ Дф/4тгхп, where Дф is the total potential drop across the
1/2

layer, and Xp is the Debye length. Then, using ug = (kTg / mg ) /x^, we find 

that

XB ' едф/кТе

However, a characteristic feature of the double layer, inside which quasi

neutrality is not valid, is that едф/кТе ~  0(1) or even » 1  for a strong 

shock [9] and we see that this in fact is an example of a situation where 

the electron oscillations are non-adiabatic, and mode coupling significant.

In view of this result it seems doubtful whether local Penrose-stability [9] 

is sufficient for stability of this electron distribution. Indeed, it is 

quite possible that even if the Penrose-criterion predicts stability for all 

x, the following feedback mechanism can drive an absolute instability anyway.

Let us consider a very simple case with a cold accelerated component and a 

flat ('water-bag1 ) distribution of trapped electrons with v ^  -  vß (i.e. 

fe (x,v ) = constant in the lower shaded region in fig.3). In fig. 4 the local

dispersion relation is shown for-

i) the accelerated electron com

ponent (assumed cold) and the 

thermal component (vth~vß) 

separately (solid lines), and

ii) the entire system (dashed 

lines). The point С shows where 

the fast beam mode (F) couples 

to the plasma mode (P). This 

coupling is of evanescent type 

and the system is locally stable. 

However, it is interesting to 

evaluate the frequency at the 

coupling point С as a function 

of the potential ф in the plasma.

It is very easy to

FIG.4. Local dispersion relation fo r  fast (F) and 
slow (S) beam modes and plasma (P) modes. Dashed 
curves show dispersion relation fo r  the coupled 
beam-plasma system.
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show [5] that situations can exist such that the coupling frequency is the

same in regionsx <0 andx >дх of the plasma, but lower within the layer

(0<x <дх ). This result also applies for the cut-off frequency, i.e. the

frequency at the minimum of the dashed curve above the point С in fig. 4. Then

assume that such an equilibrium is perturbed so that e.g. the fast mode, at

(or close to) the coupling frequency , carries the energy flux Fß into

the layer. Here the coupling to the thermal component is weak ( if шд >

local cut-off), but the coupling to the slow mode is strong, if \ is large.
В

Since the slow mode has negative energy, the flux carried by the fast mode 

when it passes x = a x  is always larger than Fg(e.g.,gFg, g> l). Due to the 

evanescent type of coupling for x >Д x, this flux will be entirely transferred 

to the plasma wave, which has negative group velocity and thus sends the flux 

gFg back into the layer. In general, one must expect that some of this flux will 

be reflected (i.e. coupled to the plasma wave with positive group velocity) 

and we can assume that the amount tgFg, t<l, penetrates the layer entirely. 

However, this flux will also be entirely transferred to the fast-beam mode and 

carried into the layer again. Clearly, if tg> 1, this feedback loop might 

increase the energy flux exponentially, and the configuration is absolutely 

unstable. On the other hand, if tg<il, the flux is likely to decay exponentially 

Preliminary calculations [5] indicate that one always has tg< 1  in the limit 

л x-*0, whereas t g >  1 indeed can be fulfilled for finite лх and a properly 

chosen form of Ф (x). However, a rigorous mathematical treatment of this 

phenomenon becomes very complicated, and our main effort at present is directed 

to finding a suitable approach that reduces the difficulties to a manageable 

level.
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Abstract

STA TISTIC A L T H EO RY  O F STRO N G  LAN GM UIR TU RBU LEN C E.
1. Basic principles. 2. Cubic non-linearity. 3. Linear theory. 4 . Non-linear 

theory. 5. The energy-containing region. 6. The inertial region. 7. Spectra o f  inertial Langmuir 
oscillations. 8. Discussion.

1. BASIC PRINCIPLES

At the Second Kiev Conference, one o f the authors [ 1 ] described the basic 
principles o f  the statistical theory o f  strong Langmuir turbulence and the first 
results obtained [2]. The present authors have greatly developed this theory during 
the period between the second and third Kiev conferences: the groundwork o f the 
basic equation has been completed; the formulation o f the equations has been 
simplified and their analytical solutions have been given. There are several argu
ments showing that the construction o f the theory o f  strong Langmuir turbulence 
on a statistical level from the very beginning is desirable and even necessary:

( 1 ) The irreproducibility o f complex interactions appearing at the non
linear stage o f modulational interactions is a necessary factor without which a 
plasma cannot be called turbulent. If, for example, statistics is due only to a 
random initial distribution o f caverns, which contract dynamically and indepen
dently o f  each other, the picture is reproducible and hence non-turbulent.

(2 ) The different existing dynamic models seem to be inconsistent, making 
a number o f  additional assumptions without sufficient grounds (e.g. statistical 
independence o f caverns).

373
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(3 ) A  complete kinetic description is necessary owing to the inseparability o f 
the kinetic and hydrodynamic effects and their interlacing (e.g. the influence o f 
scattering on modulational effects, and so on). A  complete dynamic description 
o f all such processes is very difficult, but it can be made easier by the statistical 
approach in which from the very beginning one is not interested in details when 
describing the process but only in the average characteristics o f  motions.

(4 ) The ability o f  the statistical theory to give the answers for a real three- 
dimensional case when computers are not effective.

In the formulation o f the statistical theory [2, 3] we start with the assump
tion o f spiky-type turbulence; in other words, we consider turbulence as never 
stationary but continuously undergoing temporal and spatial changes on the 
scale o f modulation interactions. The Langmuir field E® is defined as a field 
whose frequencies are close to ± cope and the deviation o f its frequencies Agj 
from ±c jpe is small compared with cope.

The spiky type o f turbulence should be described by the correlator

The low-frequency density variations §n due to modulation perturbation 
are considered together with the Langmuir field. It is assumed that only after 
averaging on the spatial scale and on the time interval essentially larger than the 
scale and time o f  modulational interactions will the correlation function be

The spectrum o f strong Langmuir turbulence is defined as an integral over the 
correlation curve

*kEk'-k> =  Ik ,k '’ к = {к , со}, к1 = { t \  w ’} ( 1)

I k b k ^ V O O ( 2)

(3)

The correlation function o f  the low-frequency density variation is given-.

6nk'5nk" = \8n\¡.> 5(k' + k " ) (4)

and the correlations o f density variation with the Langmuir field are also 
introduced:

(5)

(6)



STRONG LANGMUIR TURBULENCE 375

To construct the theory it is necessary:

(1 ) To find the equations for all the introduced values;
(2 ) To prove the possibility o f a break in the chain o f correlation functions; 

and
(3) To find effective ways o f solving the equations.

2. CUBIC NO N-LINE AR ITY

The first variant o f the statistical theory [1 ,2 ] was based on the collisionless 
kinetic equations for the particles and Poisson’s equation for the fields. The theory 
deals with the modulation perturbations к' <  к (к ' is the wavenumber o f the 
disturbances and к the wavenumber o f Langmuir waves). It was found that the 
theory could be simplified by taking into account the cubic non-linearities only 

[4, 5]:

4JJ. ek  ̂ ^ 's12E1E2d12 + 3EiE2E3d123 (7)

E = Ejc, E t = Efc,, k = {k ,o ; } ,  dk = {d k ,d o ;}

d 12 = dk1dk2 S (k -k 1- k 2), d 123 = 5 (k - k ! - k 2-  k3)dk1dk2 dk3

The coefficients S12 and 2 123 are not yet fixed but later on they will be 
calculated by using kinetic equations. Equation (7 ) is more general in a definite 
sense than that used in R e f.[l ] since the matrix elements can be calculated, for 
example, taking into account the binary particle collision or using any other 
equations. The possibility o f  using an expansion in field strength up to cubic 
non-linearity only follows from the result known in the kinetic theory that the 
matrix elements S and 2 are analytical functions o f  A  со = cj¡ — co2, and even they 
decrease with the growth o f A  со. The case

^  -< 1 (8 ) 
U p , nT

can thus be considered in the frame o f Eq. (7).
The first inequality o f  ( 8 ) is a necessary condition for strong Langmuir 

turbulence, where W is the energy density o f turbulence. The second part o f the 

inequality ( 8 ) is the condition when the expansion in the fields can be used. It 
should be emphasized that the A со in the first inequality ( 8 ) should be determined 
from the non-linear equation (7 ) as a function o f W, i.e. an expansion in W is 
not used. This is the main point in which the theory o f strong turbulence differs
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from the theory o f weak turbulence (in which Дсо is assumed to be the difference 
between two linear Langmuir frequencies).

Since the matrix elements o f S and E in general are complicated functions o f 
Дсо, the theory o f  strong turbulence finally contains any degrees W contrary to 
the weak turbulence theory in which only the W2 effects are considered.

The effective method o f  constructing an equation containing the Langmuir 
field only has been developed by excluding from (7 ) the low-frequency virtual 
field and virtual fields with the frequencies close to ± 2 cope, not using any methods 
o f averaging on phases or frequencies. In a non-isothermal plasma the low-frequency 
field could be the sound field, but in an isothermal plasma the low-frequency 
field becomes virtual too. As a result the equation [5] :

ekE¿ = / 2 123E ÎE ÎE ;d 123 (9 )

has been obtained for the Langmuir field, where the indices + and -  correspond 
to positive-frequency and negative-frequency parts o f the Langmuir field. In the 
first approximation on the parameters

Дсо k2 V je
a  = ----- <  1 and ß = ---- :—  <  1

w pe w pe

only the processes through the virtual low-frequency wave are essential and from 
a collisionless kinetic equation we obtain

~  1 е^+з (Й Г о & Ё з )  ~
s 123= -------------------—  = I 0 (10 )

47rn0T eff e2+3 kk jk 2 k3

From this expression it is easy to obtain the equations which were used in the 
analysis o f  strong Langmuir turbulence by Rudakov [ 6 ], Zakharov [7], Galeev 
et al. [8 ], Nishikawa et al. [9] and also by Kruer et al. and 
Thomson et al. [10], and Weinstock and Bezzerides [11], etc. These equations 
are obtained i f  e2+3 and e2+3 are approximated by the expressions — cOpj/Cco-coJ2 

and cOpe/((k -  kj ) 2V j e), i.e. one can neglect the imaginary parts and consider them 
to be much greater than unity. The equations obtained from (10) are more exact 
in the sense that under the non-equilibrium distributions the velocity o f sound in 
non-dimensional units is not equal to unity, but equals the ratio o f  two moments 
in the distribution function

/15
VS V  T e

(И)
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where, in the one-dimensional case, for example,

T ^ f = ~ m  / v ^ T dV; T e = / m ev2 0 (e)dv (12)

is the electron distribution function.
Our interest in the result (10) does not lie in this type o f correction in the 

non-equilibrium plasma which, however, in a number o f cases (especially for 
comparison with the experimental data on solitons) is essential, but lies in the 
possibility o f regular calculation o f the correction terms. Such additional terms 
are not small corrections, by the way. In fact.in the 2  compensation eVe appears, 
which reflects the effect o f local quasineutrality. Due to this compensation, the 
separate terms in 2  are much larger than their sum, and small corrections to each 
o f them may be o f the order or greater than 2. Such corrections are sometimes 
wrongly called electron non-linearities.

The calculations show that the effects o f deviation from quasineutrality 
in the first order on ß are o f the same order as the so-called electron non-linearities. 
The contribution o f the processes due to the virtual wave with double plasma 
frequency is also o f the same order. The sum o f these three corrections is strictly 
equal to zero in the one-dimensional case and it is not equal to zero in the 3D 
case. It has been shown that these corrections stop the growth o f the three- 
dimensional caverns, in which x ~  t2/3 on the level [ 1 2 ]

1 / 3
5n /me \
-------(  — ) (13)
n \mi J

i.e. a supersonic collapse [7] (5n/n ~  1) is impossible. It has been found that the 
self similar supersonic contraction [7] needs regularity o f  initial phases and 
phasing in the process o f compression <p ~  т1/3. The relative role o f these self- 
phasing processes in a really turbulent plasma is not quite understood, but it is 
certain that many processes not included in Ref. [7] such as are described above 
are essential. Moreover, the other selfsimilar solutions found in Ref. [13] do not 
conserve the number o f quanta as the energy in them tends to zero. The possibility 
exists that Langmuir waves, lost by one o f  the caverns, start then to form a new 
cavern. The description o f such processes and the successive development o f such 
schemes necessitates the statistical approach from the very beginning. It has also 
been made clear that any radiation o f sound under compression can carry away the 
energy, comparable with the initial energy [14]. It was shown that spherical 
caverns are converted into spherical layers [15], the further autocompression o f 
which can be stopped by powerful radiation o f sound [16]. It has also been shown 

in R e f.[17] that the density perturbation remaining after cavern contraction
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dissipates into sound waves which stabilize the processes o f compression after
wards. Thus the problem o f complicated interactions with sound waves appears 
to be due to both processes.

The elucidated complexity o f the dynamic processes can lead to irrepro- 
ducibility o f motions. We start with the assumption that the fields are random, 
and first o f  all consider a linear theory o f modulation instability o f a random 

pump. This description can be based on an equation with cubic non-linearity.

3. L IN E AR  THEORY

Analysis o f the theory o f modulation instability o f a random field is 
o f great importance for a number o f reasons.

It seems that from the dynamic picture one can conclude that phase cor
relations may play an essential role in the modulation interactions. There is a 
regular correlation between the phases in Langmuir solitons, and a phasing o f 
the oscillations exists in the processes o f auto-compression o f 3D caverns. The 
modulational instability was analysed mainly for the case o f  a regular pump.
The first analysis o f  the modulation instability was, however, given for gas o f 
cool plasmons (i.e. random pump) by Vedenov and Rudakov [18] and Gailitis [19] 
(also for random fields) from the principle o f minimum energy. The further ana
lysis o f the modulation instability o f random fields [ 2 0 ] has shown that the 
result o f Ref. [ 18] corresponds mainly to a regular pump, but for the random 
pump one should take into account the non-linear plasma responses and renormal
ization. The analysis o f  instability o f random fields based on Ref. [20] can give 
information on the importance o f phase correlations in the modulation processes.

Originally in Ref. [20] the linear theory was constructed on the basis o f a 
kinetic equation. It has been made clear that the equations for the modulation 
instabilities are modified in two respects:

(1 ) Instead o f  l/ek. ko (in the dispersion equation for the regular pump)

Eg (k , k - k n) 2 (k, k+kn) 2
(14)

the total dielectric permeability appears:

ek = ek + (15)

where

is the non-linear dielectric permeability.



STRONG LANGMUIR TURBULENCE 379

(2) Instead o f  Eq (in the equation for the regular pump),(l/( 1 + dk))/ Iko dk0 

appears, which is the natural generalization in the case o f the presence o f many 
modes o f the random pump field; the coefficient l/ (l + dk) corresponds to the 
renormalization o f charge and takes into account the fact that the ‘fur coat’ 
surrounding the probe charge reacts differently in modulation perturbation o f 
different frequencies and wave numbers. For co0 -  oj'0 <  |k0 -  kólvT¿,

, 1 i k +k o ) ^k0,coo , t \
dk = I \ --- ----- dk0 dco0 (16)

_j_______  А ko,

T e  + T i)J kgi:4тгп0 (T e + T i ) J  ко |k + k0 |2 ek_ k()

The results o f  the analysis o f  the dispersion equation obtained in the limit 
к <  k0 have been given in Ref. [21]. Recently, linear theory has been developed 
along the following lines:

(1 ) It has been shown [22] that dispersion equations can be obtained from 
the equation (7 ) for the cubic non-linearities;

(2 ) A  method o f deriving and solving the integral equations for three- 
dimensional modulation instabilities has been developed [23].

(3 ) The role o f  non-linear permeability (E q .(l 5)) in the general case o f 
weak anisotropic distribution o f Langmuir waves for

kd Г me со
k ^ k *  = k ; =  — »/ — ; kd= v . = ^  k d = ^

m i vTe

was analysed by Kornilov [23b]. It is known that the non-linear frequency shift 
has the form

e Г (k k i ) 2 Ikl dk,

J  k2kj 47rn0T e
(17)

The point is that the case o f one-dimensional and strictly isotropic turbulence 
appears to be degenerate since the non-linear frequency shifts are constant, 
cancelled in Aco.and do not appear in the dispersion equation for the modulation 
perturbation. In the real case o f noticeable or weak anisotropy, such cancellation 
is absent and ek, as has been shown [23], contributes essentially and changes the 
modulation instabilities (F ig .l).

(4 ) The role o f ion-sound perturbations, leading to an additional contribution 
in e^, has been analysed and their stabilizing role has been found (see also Ref.[ 17]), 
owing to the imaginary part o f ek .
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FIG .l. Modulation instabilities: c*] ~  W1/4 [18]
oî2 ~  W1/2 [20] 
a3 ~W  [23]

FIG.2. Modulation instabilities o f  spectra.

(5 ) The effect o f  resonant particles on the development o f modulation 
instability, for example in the case o f relativistic electronic beams, has been ana
lysed by Tsytovich [24] and by Kornilov and Tsytovich [25]. A  considerable 
modification o f  the modulation instabilities has been found when the imaginary 
part o f takes the main role.

( 6 ) The present authors have analysed [26] the modulation instabilities 
o f spectra having the maximum at к k¿ and falling down rapidly enough at 
к >  kj, e.g. falling down according to a power law \¡kv (Fig.2).

The modulation instability o f long-wave oscillations к <S k* (energy- 
containing region) and the short-wave oscillations к >  к* (inertial region) has 
been analysed separately. Owing to the behaviour o f the non-linear permeability, 
it is possible to divide the analysis into two separate analyses. It has been shown 
that the discrepancy in frequency shifts and in the exists for the case when the 
pump waves belong to the energy-containing region (kj <  k¡) and the modulation 
perturbation belongs to the inertial region (k >  kj). The growth rate o f instability
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k*  k m a x  к

FIG.3. Growth rate o f  modulation instability.
W/nT >  me/m¡; 7 ~  ks/6 at к «  km3x.

for the disturbances belonging to the energy-containing region grows with к more 
rapidly than in the case o f regular fields o f the same total energy and reaches the 
maximum value already at к ~  k¿, 7 max ~  cope V (m e/mi)(W/nT), but at к >  k¡ 
the growth rate tends to zero due to the above discrepancy between the non-linear 
shifts.

In the inertia region the modulation instability is determined by the inertial 
field (k j >  kj). The wavenumber at which the maximum growth rate is obtained:

/ - >/6  /m ./m A  w nip
кщах = к ( ~~~—  ) , (18 )

max \W/nT / nT m¡

is somehow less than the

1/4

kRP = ki
me W  \

i nT J

o f the corresponding regular pump. The maximum growth rate also becomes 
less (Fig.3):

.ЯР ^  J Ï  (19)
7max Tmax у ^ / п Т  / ’ ^ max Wpi V  nT

Thus the linear analysis shows that the random fields influence the values o f 

maximum growth rates, though the instability is not essentially changed, i.e. 
phasing is not fundamental to the development o f  modulation perturbations. 
The linear analysis also shows that there are physical grounds for the separation 
o f  turbulent fields in the energy-containing к <  k¡ and inertial к S> k¡ regions, 
since their instabilities are independent. The analysis shows that this separation is 
also useful at the non-linear stage.
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Using the basic principles given above, the non-linear theory has been re
formulated on the basis o f  the equations with cubic non-linearity [3, 27]. Integral 
equations have been obtained for Ik k' containing Gk k k' and V k k'; the 
integral equations for Gk kbk' containing Vk k' and |6 n|£\ These integral equa
tions take into account:

(a) The non-linear permeability ek ;
(b ) The effect o f the charge renormalization; and
(c) The fact that they do not fix the values A cj which should be found as a 

result o f the solution o f the equations.

The solution o f these integral equations through Vk k',and Ik k' through Gk k k', 
permits us to express Vk k' through Gk k k'|5n|k'. Finally, it is possible to find 
the equation for Ik k< containing some additional terms, linear in |ôn|k'. After 
averaging (b), we obtained the equation for Ik, containing the terms linear in

4. NON-LINEAR THEORY

Since only the terms linear in |Sn|k' are taken into account, an additional 
examination should be made by evaluating the following terms o f higher order

and quadratic terms in |6 n|k', the coefficients o f which depénd in a complex way 
on Ik k' and Ik :

basis. We emphasize here that the values A c j  are not fixed and they must be 
defined by the solutions o f non-linear equations for |5n|k' and Ikj k', and the 
value Дсо cope/(k2 v-|-e) is arbitrary.

(20)

whereî k ~*"{Ik , Ik - k'}-

in |6 n|k'. The non-linear equation for |5n|  ̂has been obtained, containing linear

(21)

Here the operators A, X, SM are functionally dependent on Ik k' ancj

l + d k
(22)

The possibility o f limitation by the terms quadratic in |6 n|k> needed a more detailed
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In this connection, the general method was developed in which the correlation 
effects o f higher order in |ôn|k' in the equation for l k k' as well as in the equation 
for |5n|k' were taken into account. The solutions found by considering the 
lower orders in |5n|k< were used to estimate the contribution o f terms o f higher 

order in |5n|k'. It was found that the criterion for neglecting them is

W
a =  — < l  (23)

nT

In the frame o f the system o f equations obtained, taking into account lower- 
order terms in |5n|k/, the problem o f their modification due to kinetic processes 
(e.g. the scattering processes) has been considered. It was found that the essential 
modification takes place due to additional terms, proportional to |5n|k' in the 
equation for Ikk<. They can lead to a change o f direction o f energy transfer 
i f |5n|k' corresponds to the value reached at the stage o f non-linear saturation.
It has been shown that the scattering on electrons transfers the waves in one step 
to a large k-s. The scattering on ions remains differential and it does not differ 
essentially from the scattering that takes place in the absence o f condensation.
The balance o f processes o f  scattering on electrons as well as on ions leads to the 
spectrum 1/k2 in both three-and one-dimensional cases [3 ,4 ]. The modification 
o f this spectrum due to Landau damping on the particle tails has been calculated 
and the necessary appearance o f  some groups o f fast particles was shown [28] 
in accordance with observations from a number o f existing experiments.

It was shown, however, that for not very large values o f  к the role o f kinetic 
effects is rather small compared with hydrodynamic effects.

5. THE ENERGY-CONTAINING REGION

The equations for Ik in the energy-containing region were analysed in the 
case when the perturbations are o f the modulation character к ^ . It was 
shown [27, 29] that:

(1 ) The modulation disturbances lead to some additional non-linear 
frequency shift o f Langmuir oscillations, depending integrally on the spectrum o f 
the modulation perturbations,

I Г  l«n£ .
A w - w p e V /  ----r ~ dk (24)'  j  n0

(2 ) The non-linear frequency shift provides a decompensation in non
linear responses which leads to the stabilization o f the modulation perturbations.
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It was shown that the energy-containing vibrations become modulationally stable 
at

(3 ) The analysis o f the non-linear equation for |5n|k' shows that satura
tion o f the modulational perturbations is obtained on the level corresponding 
to the relation (25).

(4 ) The results for the three- and one-dimensional cases differ only by a 
numerical factor o f the order o f  unity [30].

(5 ) A t the relatively low level o f the modulation perturbations necessary 
to stabilize the modulational instability, the limitation by the lowest effects in 
|6 n|£» is sufficient.

Thus the non-linear theory o f the energy-containing field leads to a complete 
and fully self-consistent non-linear stage o f modulation instability. On the 
basis o f these concepts the theory o f  the radiation o f a strong Langmuir turbulence 
at frequencies close to the double plasma frequency has been constructed [31].

6 . THE IN E R TIA L  REGION

The general scheme for the solution o f the system for the integral equations 
is the following:

(1 ) It was shown that, with the necessary accuracy, the coefficient o f the 
equation for (5n/n)j> depends on W0 = /1^ ^dlc dco/47r only. Thus the first 
step is the solution o f the integral equations for (ôn/n)|- as a function o f W0.

(2 ) The second step is to find V k k< as a function o f (ôn/n)£ w .
(3 ) The third step is to find Gk k] k' as a function o f Vk k>.
(4 ) The fourth step is to find Ik k' as a function o f  Gk k k'. A fter averaging 

Ik k’ it gives Ik and thus W0 too. In the inertial field it is necessary to solve the 
non-linear equations for

(25)

(26)

which one may easily consider as a function o f X = co/kvTe and k.
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FIG.4. Phase plane к = k'/kj and X breaking into various regions.

Introducing

we find that the phase plane к = k'/kd and X breaks into a number o f  regions, 
according to Fig.4.

It must be noted that at k/kd X* the introduced function k does not 
depend on k, i.e. k = v^. The authors have obtained and solved the integral 
equations asymptotically in all the regions discussed (far from the lines dividing 
the regions in Fig.4) and have then joined them together. The result is shown in 
Fig.4. As an example we give here the following equation which is valid in 
regions I and II o f the figure:

81 X4 Г
= M [ m e / З Л . Л  4 , . _ / * « . V . X . ) v Xl^ d X 1 dX1 (28)
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where

IX. - x 2l (29)

The solutions obtained by joining together the asymptotic solution in 
regions I and II for X* X0, i.e. W/nT >  т е/пц, have the form

1 / 4
56 X|X4 t 1 (  W/nT \

VX 9 In A  Xs ’ г 'у т е / т ^
* x*

This result allows us to evaluate the level o f modulation perturbations in the 
inertial region:

It appeared to be lower than the modulation perturbation level in the energy- 
containing region. In the same manner, the solutions o f corresponding equations 
in all the remaining regions have been found.

These results show that the modulation perturbations are in fact strong, i.e. 
they have no real determined frequency. The stabilization by the modulation 
perturbations in the example given is similar to the stabilization by the sound waves 
discussed previously. But the result (30) is valid in the case o f isothermic plasma. 
The maximum o f Ik w is close to the frequency corresponding to the linear growth

7. SPECTRA OF IN E R TIAL  LANGM UIR OSCILLATIONS

It has been shown that the energy-containing oscillations lj® create an effective 
source Qk , generating the inertial oscillations IJ,. This source depends integrally 
on the modulation inertial perturbations:

(31)

rate, since this is the only value with the frequency dimension that enters into the 
problem.

4c, « J 2
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Since c j "  is rather close to cope, and cj is close to со,, we have

w * = w " / 0 r ) k. , „ . d“ > ( k ' k'
(33)

where

№ , k ' ) -

1 +
k 2 VTe

to
N~Ь €~ иk , w p e + w '  k,cope+cj'|

ek, a) ' + cj

2cj'cope-  3k2 V je

pe

^pe

cj;pe

(34)

(35)

Thus the correlation effects and the structure o f the correlation curve is fully 
defined by the frequency dependence o f the modulation perturbations, i.e. by 
the order o f magnitude o f the growth rate o f the modulation instabilities. The 
integration (33) gives the spectrum к <  kjX*:

Wt = • a  «  5.2n

. 4 3/2 /  \  - 1/2 
_Wo/me\ (  W0

1п Л \ т ; /  \n0T
(36)

By taking into account the renormalization (not taken into account in (36 )), one 
finds that the spectrum is o f the type:

!

W ^ ,  2 < ^ < 3  (37)

In the region o f к >  kdX* the spectrum (37) also appears. The spectrum indices 
are essentially less than those that appear in the models o f non-interacting caverns.

Let us analyse the three-dimensional isotropic spectra. The analysis has 
shown that with accuracy up to numerical factors o f the order o f unity, which 
enter only in the level o f the perturbations (i.e. in the coefficients a, a' ) ,  the 
one- and three-dimensional spectra have the same spectrum indices.

Thus a theory o f the spectra o f strong Langmuir turbulence with physical 
and mathematical bases has been created which is valid for both one- and three- 
dimensional cases. The latter is important for practical purposes and the first 
one-dimensional case is important for comparison with the numerical calculations 
and the 1D models. In the 1D case the theory leads to the conclusions which are 
qualitatively in agreement with the 1D soliton model i f  the kinetic effects o f a soliton 
breaking are taken properly into account.
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The proposed theory gives concrete conclusions concerning the correlation 
effects, spectra o f modulation perturbations, spectra o f turbulence, and spectra 
o f  fast particles, which are easy enough for an experimental test. The developed 
theory is logically and physically complete and mathematically well grounded. 
Further development o f the theory is necessary, especially in order to investigate 
the acceleration o f fast tail particles.

The theory has many astrophysical applications: shock waves, annihilation 
o f  magnetic fields, sporadic radio-emission, pulsar emission, and acceleration o f 
cosmic rays.
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THE PROBLEM OF COLLAPSE IN PLASMAS
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Abstract

T H E  P R O B L E M  O F  C O L L A P S E  IN P L A SM A S.

T h e p h en om en a o f  th e  co llapse o f  plasm a waves are discussed from  flu id -m odel and 
k in etic-m od el p o in ts  o f  view.

IAEA-SMR-32/9

1. INTRODUCTION

It is well known that many o f the instabilities that arise in plasmas lead 
to turbulence in the system. The theory o f weak turbulence is quite well 
understood [ 1 , 2 ] but , unfortunately, there has not yet been any proper theory 
for strong plasma turbulence. Since the strongly turbulent regime can give rise 
to plasma heating, there has recently been a great deal o f interest in developing 
an adequate theory for strong plasma turbulence. Sufficiently strong excita
tion o f plasma waves can give rise to such strong turbulence. Moreover, the 
phenomenon o f non-linear modulational instability o f plasma waves leads 
from a weakly turbulent regime to a strongly turbulent regime. So one way to 
understand the strong turbulence would be to study the non-linear evolution o f 
these modulational instabilities. Some attempts have been made in this direc
tion [3—7] and it has been shown that the phenomenon o f collapse, which is 
quite a well-known feature in gravitational systems, can also occur in strongly 
turbulent plasmas. In the latter case, by collapse one means that the size o f the 
three-dimensional density depletion (caviton) reduces to Debye length. When 
this happens, the trajectories o f the particles start to interact, and the wave 
energy is consequently dissipated. So collapse offers a non-linear dissipation 
mechanism with the difference that, unlike the linear dissipation mechanisms, 
it has an amplitude threshold which is determined by the spectral distribution 
o f the waves under consideration.

It has been shown by many authors that the non-linear Schrödinger (NS) 
equation characterizes a variety o f weakly non-linear plasma waves. In one 
dimension, the NS equation admits localized stationary solutions: the envelope 
solitons or envelope holes for modulationally unstable or stable situations 
respectively [8 ,9 ]. The cavitons, which are infinitely increasing local density 
depletions, however, cannot exist in one dimension. The existence o f these

391
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cavitons has been demonstrated both by experiments [ 1 0 , 1 1 ] and by numerical 
simulation [ 1 2 ], but so far we have not been able to show the identity o f these 
cavitons with the exact solutions o f the 3D NS equation. In fact, because o f 
the mathematical complexity involved, work dealing with the 3D NS equations 
has been very scanty.

Zakharov [3] studied the time evolution o f spherical 3D Langmuir waves 
in strongly turbulent plasmas and showed that in finite time the Langmuir 
waves undergo a collapse. His model will be discussed in Section 2.
Tsytovich [5,13], on the other hand, followed the statistical approach for 
the strongly turbulent systems. His paper is published in these Proceedings, so 
we shall not elaborate on his theory. By using the multiple space time scale 
method o f Krylov, Bogolyubov and Mitropolsky (KBM ) [14], we self-consistently 
derived the 3D NS equations for non-linear ion-acoustic and Langmuir waves 
[6 , 7] and derived the sufficient and necessary conditions for the collapse to 
occur. In that analysis o f ’Langmuir waves we had neglected the ion dynamics. 
Recently, we [15] have extended our investigations to include the effects o f 
electron inertia and ion dynamics. In contrast to our previous work, where 
we had used fluid equations, in the present analysis the Vlasov equation has 
been used. A  general discussion on the problem o f collapse o f plasma waves is 
given in Section 5.

2. ZA K H A R O V ’S MODEL

By averaging over the fast time GJ~p'e and by assuming quasineutrality in the 
slow motions, Zakharov arrived at a simplified dynamic model for 3D Langmuir 
waves. His basic equations are

where Êf is the complex amplitude o f  the high-frequency electric field; 6 n is the 
ion density perturbation; n0 is the equilibrium plasma density; cs= [K (T e+ ^T¡)'/'M| 
is the sound speed; and cope =  (47Г n0 e2 /m) 1/2 and Xq =  (K T e/47rn0 e2) 1/2 are 
the electron plasma frequency and the Debye length respectively. In writing 
E q .(l), electronic non-linearities have been neglected; this is valid only for fast
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processes with characteristic time <; (a>pek2 XjjW) 1 (see [16]), with W as the 
wave energy normalized to the thermal energy nKT. Equation (2), however, is 
valid i f W >  ( т Т у м Т е) for k2 X^ ^  m/M.

For k2Xp 4 m/M, i.e. for v| Щ Cj (vg being the group velocity o f Langmuir 
waves), Eqs (1 ) and (2 ) give the following NS equation:

v  ( ' f  +  I  v v  T ¿ m  % §  v - f ï i ? 1’ )
(3)

For a spherically symmetric case, Ii =  Эф/дТ, Eq.(3) reduces to

90 a / 1 a , 
i —  +  —  ( —  —  рг ф } +  \ф\2' 

от op \ p ¿ dp
(4)

where the dimensionless quantities p, г, ф are defined as

1
2

r =  V  ^ XD p > t =  rcoре1 ; E = 4cs(ttnoM ) 1/20

One. can easily show that Eq.(4) has the Integrals o f motion given by

Ii =  J  dp р2\ф\2 

0

and

- I dp I I V (p0 )12 +  2 I ф 12 — -  p2 I ф I4 (5)

Moreover, Eq.(4) satisfies the relation

d2 A  

dr2 /6 I2 — 2 / dp I V (p0 ) 12 — 4 / dp p2 |0| <  6 I2/ (6)

with A  defined by

/A  =  J  dp p4 1 A 12

0
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On integrating ( 6 ) we find that the positive definite quantity A  is given by the 
relation

where С [ and C2 are constants o f integration. From (7 ) it is clear that, for 
I2 <  0 , this relation can be satisfied only for a finite time; at this time (r  = r0 , 
say) the solution o f the initial problem goes through a singularity. In other 
words, Langmuir waves go through a collapse i f  I2 < 0 ,  i.e. when W >  k2 X p , 
which is the condition for strong turbulence as well as for modulational instability. 
It is interesting to note that as т r0, the fluctuations in the ion density become 
too large ( 6 n/n0 ~  m/M) and consequently our Eqs (3 ) and (4 ) break down.
For the same reason, the self-similar solution discussed in Ref. [3] also breaks 
down when the collapse occurs.

This analysis is restricted to very long wavelength turbulence, i.e. for 
k2Xp -4, m/M. The question one would like to ask is what happens when 
k2 Xq >  m/M? Does the collapse still occur? We shall try to answer this in the 
next Sections 3 and 4 by self-consistently deriving the 3D NS equation with 
the help o f  fluid equations and the Vlasov equation.

3. FLUID MODEL FOR THE NS EQUATION

In deriving Eqs (1 ) and (2), which are the basic equations for Zakharov’s 
model, we had neglected the electronic non-linearities. These have to be taken 
into account when the intensity o f the oscillations becomes large, especially 
near the region o f  collapse. Moreover, this model cannot be used for low- 
frequency phenomena because o f the fast time-averaging used. By employing 
the multiple space time scale method [14], which has been successfully used 
for ID  problems [17—22], we remove these restrictions in our model.

3.1. Ion-acoustic waves

To illustrate the procedure, we restrict ourselves in this section to the wave
number range k2 Xq ^  m/M. In this case, we can use the 3D fluid equations and 
neglect the electron inertia. On assuming that the slow variations o f the finite 
amplitude o f the waves in a weakly non-linear plasma are given by

A  < 3 I 2r 2 + Q t  +  C2 (7)

9a -* -*
—  = eA i +  e2 A 2 +  ...at ( 8 a)

and

- 1 =  еВ<!> +  е* В<?> +  ... 
dxj «  4

(8b)
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we find that the resonant secularities to order e2 and e3 can be removed by 

imposing the conditions [6 ,7 ]

A j  +  v* -B (1 )= 0 (9)

and

ЗФ =* Э2 Ф , „
i —  +  P : -------- = Q I Ф i2 Ф +  ЯФ

Ьт b t  a f
(10)

respectively. Equation (10) is the desired 3D NS equation. For cold ions and 
isothermal electrons, the various quantities appearing in Eqs (9 ) and (10) are

Vg = ( o j 3/k4)k  =  group velocity

Ф =
(k -a )

r = e2 t, £ =  e (x  — vgt)

_  ^  avg0, _  œ 3 

aß 2 Эк« 2k4
Sa ß ~  ka kß O  + 3 w 2) ( 11)

Q = ------ (3 +  Зк2 +  к4 ) " 1 (Зк10 +  6 к8 -  бк6 -  29к4 -  30к2 -  12)
12 к6

( 12)
and

R =
со 

2к2

9к2 -v  
щ  ( w 2 - k 2) +  —  (7,  -к) 

CJ
(13)

In Eq.( 13), т?! and 7 , are absolute constants to be determined from the initial 
conditions. In writing Eqs (11) and (12), use has been made o f  the linear 
dispersion relation

со2 -  к2 +  к2 со2 =  0 (14)

со and к are normalized to ion plasma frequency and electron Debye length. 
The R-term in Eq.(10) can be eliminated by the simple transformation
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Ф -+ Ф exp (— íR t). So from now on we shall drop the R-term from Eq.(lO ). 
We can easily show that Eq.(lO ) is modulationally unstable only if
—i' —У —► —У

(P : к k)Q < 0 , _ к being the characteristic wavenumber o f the modulating 

wave [7]. For P and Q defined by Eqs (11) and (12), we find that for oblique 
modulation, namely (к - к )  =  к. к cos в, ion-acoustic waves are unstable for 
к >  1.47 i f  0 < 5 5 °  and for 0 <  к <  1.47 if 0 >59 .5 °.

Now to investigate the time evolution o f this modulational instability, let 
us invoke spherical symmetry, in which case Eq.(lO ) reduces to

ЭФ со3 /1 ЭФ 3 , Э2Ф
—  +  —  I -------------------- w 2 —
9t к4 9$ 2  Щ

i —  +  ==7 f f -  -  f  w 2 — - J = Q ! Ф I2 Ф (15)

On making the simple transformations

3co5
Ф =  Pß I Q r ,/2 Ф and £ = —  p 

Eq.(l 5) for со >  0 takes the form

M
Í - ----- V o ^ + - T  ( m - 1) ^  = 7?P2m¡ ^ I 2 ^  (16)

or ^ p ¿

where 7? =  1 for Q >  0 and - l f o r Q < 0 ;  p. =  I +  (3co2) -1; and V 2 =  (92/Эр2Ж2/р). 
As in the previous section, it can easily be shown that Eq.(16) has the following 
integrals o f motion:

Ij = J  d p p 2 | ^ ¡ 2 (17a)

о

and

- Ii2 -  i dp p2 

0

V ' I ' I 2 +  (m _  1) I ^  I2 —  tj p2fi \ Ф I
P2 2

(17b)

Once again, we observe that a positive definite quantity

- IA  =  J  dp p 4 I * | 2 

о
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satisfies the relation

oo

1 d2A

2  dr2
о о

(18)

By definition ß >  1, so the second term on the right-hand side o f  Eq.(18) is 
negative. For r? = — 1 (Q  <  0), the third term is also negative. In this case 
Eq.(18) gives

From the arguments given in Section 2 we see that the ion-acoustic spherical 
clump will collapse i f  I2 < 0 .  However, for Q <  0, according to Eq.( 17b) I 2 is 
always positive and hence, for k2Xp >  m/M, there is no collapse o f ion-acoustic 
waves. For k2 X^ <  m/M, we cannot neglect the electron inertia; what happens 
in this case we shall investigate in the next section. It is worth pointing out that 
I2 can be negative provided Q >  0; so the necessary (but not sufficient) condi
tion for collapse is that Q >  0, which is the condition (for со >  0) for the linear 
modulational instability o f  plasma waves in one dimension. The reason Q >  0 
is not the sufficient condition for collapse is because the relation (19) is no 
longer valid.

3.2. Langmuir waves

Following the procedure outlined for ion-acoustic waves, one finds that for 
adiabatic electrons, on retaining the electronic non-linearities, the finite- 
amplitude Langmuir waves are also described by the NS equation (10). For 
m/M <  k2Xp <  1, i.e. when the ion dynamics and the kinetic effects are neglected, 
the coefficients o f the dispersive and non-linear terms are given by

A  <  12 12 г2 + С [ т +  С'2 (19)

(20)

and

к4
Q = - —  (16k2 +  15) >  0 (21)

where со and к are related by the dispersion relation со2 =  (1 -I- к2). Here со 
is normalized to cope and к to (4n n£ e2 /yp0 ) 1/2, 7  being the ratio o f  specific
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heats a_nd_Po^the equilibrium electron pressure. For P and Q given by (20) and 
(21), (P : к k ) Q  >  0; so Langmuir waves are modulationally stable. For a 
spherically symmetric case, Eq.(10), along with Eqs (20) and (21), gives

ЭФ 1_ Л  ЭФ_ J _  ЭЧ>

дт t o \ £  Щ +  2 со2 Ыi —  + - 1 7 —  + —  —  ) = Q1 Ф I2 Ф (22)

which.on using Ihe transformations Ф =  рц IQ I 1/2 Ф and % =p/(2co3),yields 
the two integrals o f motion, namely l t as defined by Eq.(17a) and

/ dp p2 | V * I 2 +  ~  ( j u ' - l )  1Ф Ia
1

+ 2
V  I |4 (23)

with = (1 — lo2)  =  — k2. The ju'-term is absent in Zakharov’s model, which is 
valid in the limit к -*• 0. We may remark that for k2 <  1-, l '2 is a well-behaved 
integral. Once again we can show that collapse is possible only i f  V2 <  0, i.e. if  
V =  ~  1, which corresponds to Q <  0. However, for the weakly turbulent case 
(m/M ~  W k2 Xp) that we have considered here, Q >  0. Hence the possibility 
o f  collapse exists only for the case k2X^ <  m/M, in which case the ion 
dynamics plays an equally important role. In fact, as shown in Section 4, the 
two non-linearities, namely the non-inertial (finite-к contribution) and the 
inertial (ion-dynamical effects o f order m/M), compete with each other and the 
collapse occurs when the inertial non-linearity dominates the non-inertial one.

4. KINETIC MODEL FOR THE NS EQUATION

Here we give the unified analysis which would include, over and above 
the wavenumber regimes considered in the fluid model and in Zakharov’s model, 
the wave-particle interactions also. However, we consider only the electrostatic 
waves in collisionless plasmas; in this case the governing equations are the 
Vlasov-Poisson equations:
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Once again we use the KBM [14] method. For a weakly non-linear system, we can 
use the expansions

f = f 0 +  ef, +  e2 f2 +  ... (26)

and

E = 6 Ei (а, а, ф) +  e2 E2 (а, а, ф) +  ... (27)

—)■ —>
where a is the complex amplitude o f  the wave and ф =  (к • x — cot). The slow 
space-time variations o f a are given by

% = e B ( 1> +  e2B(2) +  ...
Эх

Эа
—  = eA, (a, a) +  e2 A 2 (a,a)  +  ... 
dt

where A n (a, a ) and B ^ ( a , a )  are to be determined from secularity removal 
conditions to various orders in e. A  similar procedure was used by Einaudi and 
Axford [23] to determine the time evolution o f  the particle distributions. To 
lowest order, Eqs (24) and (25) have the solutions

E[ = к ae^ +  c.c.

and

. me ¿Фр /_> afoa \
la _  13 ~  ( к • —г г  J +  c.c. (28)

ma ( k - v —с о ) '  9v /

v =  +  1 for ions and — 1 for electrons. The subscript a. stands for the charged 
species — electrons or ions. Moreover, the various quantities k, v, со and E are 
normalized to X^1, ve =  (K T e/m)1/2, c jpe and (mve cope/e). From Eq.(28) it 
is obvious that f j ¡  ~  (m /M )fje. To find out higher order solutions, we have to 
order the ion distribution function properly depending on the order o f the non- 
linearity parameter e which could be taken as the strength o f the non-inertial 
non-linearity for the Langmuir waves. To illustrate this point, let us take the 
case e ~  (m/M) 1/3 ; in this case the proper expansion for f¡ would be:

fi =  f0i +  e4f l i  +  es f 2i + (29)
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The fn¿ defined by Eq.(29) are to be considered on the same footing as f ne. 
The dispersion relation for the Langmuir waves is then given by

k2 =  к
•/

d3v 9f0e

(k • v -  w ) 9v
(30)

and,on following the procedure outlined in the previous section, we can show 
that the NS equation, which arises from the secularity-removal condition to 
order e3, does not become affected by the ion dynamics at all. However, for 
the case g ~  (m/M) 1/2 we should take

fi =  foi +  e3f n  +  e4 f 2i +  ...

We can now show [24] that the resonant secularity-removal condition to order 
e2 demands that

A! + vl.B(1)=0 (31)

where vg =  (k +  A e)/x2e> with

X n a  к /
d3i________  dfpq

(k • v -  w )n âv*
(32)

A a - f
°  ( k - v - c o ) ¿ V dv '

(33)

Similarly, the resonant secularity, to order e3, can be removed by satisfying 
the relation

,9 a  ^  92a

1 Yr + p : a fif :Q' I a I2 a +  R'a (34)

with

1

X2e

—>• —> 
v . vg *3e

—>■ d A e ^  
- V. ----- +  S„

dw
(35)
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2X2e 

R '= -X ii/X2e

Q ~ I 3 Xse X3ey (36)

and

S. = [  ( k .  % )
J  (k • v -  со) 3 '  9v /

We may note that the ion contribution appears only in the linear term which 
can be removed from the NS equation by the transformation a ->• a exp (— iR 'r). 
As long as R ' is real, the stability o f Eq.(34) is assured provided ( ?  : к. к ) Q' >  0. 
In deriving Eq.(34) we have made use o f  relations (30) and (31) and o f the fact 
that Im со Re со.

■—У
For Maxwellian distribution for both the species and for к =  k êz, we can 

show that P^ß =  0  for а Ф ß:

P' = P '1 XX 1 yy I, CO2
z ' ( m ) +  I  Z " (M )

P' = -1  7 7
k2 I2

1 +  3 ß Z (ß )  +  3ß2Z ' ( p )  +  y  Z »

2 k

CO
Z ( ß )  +  2ßZ ' (ß )  +  y  Z"(m )

+  k 2v¡  
o r  e

Q ' =  +
2 b

3 Is +  — г I§ 
5 3k2 3

R' = - _L
i 2 vf

Mve / Mve \ 
1 +  -----  Z

vi /

with /u =  (co/>/2k), Z =  Z (ß )  as the plasma dispersion function, Zn as the n *  
derivative o f Z, and

.n— 1 1

(n —2)!
Zn_ 2 (ß) +

(n - 1 ) !
Zn_ 1 (a0 (37)
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For из2 >  k2, these relations can be further simplified and we finally obtain 

P 'Q ’ ~  ( —k4 /cj4) and

R . =  i _  Л _  ±  +  J - Л )
2u  V m2 2ц2 v2 /

Here P' represents both Р^х and P'zz. Since P'Q ' <  0, we immediately conclude 
that Langmuir waves in strongly turbulent plasmas are modulationally unstable. 
Without elaborating on the integrals o f motion for the spherically symmetric case 
o f Eq.(34) (because the arguments are similar to those given in the earlier 
sections), we can assert that for k2 X^ ^  (m/M) Langmuir waves do undergo 
a collapse.

Let us check the case e ~  (m/M). There,

f i =  f 0i +  e 2 f l i  +  e 3 f 2i +  -

Our preliminary calculations show that the system in this case is governed by a 
modified NS equation; these details will be reported elsewhere.

For low-frequency waves, on following a similar procedure, we arrive at 
NS equation (34) but with the coefficients P', Q', R ' defined as

4 1 1

Q' = +

a

.* !_
2S,

dAa
vg vg Х з а  ~  vg ^  +

3 k2 Ss +  -  S3 
3

R' = 0

with Sn = 2  Ina and vg = “ (k +  2  A e )/S2. Ine =  In,as defined in Eq.(37), 
a a

and Ini = (v2/v2) In (ß  -»■ ju'); p =  (^  Vg/Vj).
A  detailed discussion o f the non-linear stability o f these waves, including 

electron Landau damping, is published separately. A  somewhat similar problem 
has been investigated by Nishikawa et al. [25].

We may remark that the NS equation given by Eq.(34) has Landau-damping 
effects embedded in it and we do not have to introduce these effects in the 
equation from outside as done by Nicholson and Goldman [26]. Similar inclu

sion was made by Ott and Sudan [27] for the KDV equation. 1

1 Landau damping is outside the scope o f  this paper.
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The modulational stability o f a turbulent plasma is governed by the 
appropriate NS equation. From the analysis given in this paper we find that 
in a spherically symmetric system the collapse occurs only if the system is linearly 
modulationally unstable. So, physically, one can view the formation o f the 
cavitons as the time evolution o f the modulational instability. In the case o f 
Langmuir turbulence, as the intensity o f the oscillation grows, more and more 

plasma is expelled from the caviton owing to the high-frequency pressure. This 
continues until the size o f the caviton is reduced to that o f the Debye length.
At this stage, the wave intensity becomes so large that the trajectories o f  the 
electrons start interacting and consequently leave the caviton, carrying with 
them the wave energy. So the collapse offers a very efficient non-linear 
dissipation mechanism.

In the initial stages o f the development o f  modulational instability, one can 
ignore the wave-particle effects but, later, when the collapse takes place, energy 
is transferred to waves with larger wavenumbers and consequently the region 
k2Xp 1 becomes important because the further dissipation takes place through 
Landau damping. The turbulence spectrum in this range is also expected to fall 
o ff much faster than k -2  [4]. Since our NS equation includes the wave-particle 
interactions, this can give us the turbulence spectrum in the range k2Xp ^  1 .

So far, the occurrence o f collapse is known only in spherical systems. It 
would be interesting to find out what happens when spherical symmetry is 
relaxed. In the case o f oscillating two-stream instability, even in one dimension, 
one finds the spatial collapse o f the electric field [28].

Our analysis shows that for spherical collapse, there is a threshold that 
depends on the spectral distribution o f the waves. In the case o f Langmuir 
turbulence, collapse occurs i f  k2 <  k2 ~  m/M. This is true for the subsonic case; 
for the supersonic case, however, one has to consider the ion-wave radiation.
The coefficient o f the cubic non-linear term in the NS equation, Q, in this case 
becomes time-dependent and therefore we cannot expect to have the integrals 
o f motion which do exist in the subsonic case. Moreover, the kinetic model 
presented here has to be generalized to include the non-local effects. The weak 
collisions can be included in this theory very easily, but for purely growing 
modes the KBM method does not work; for that we must look for a different 
technique.
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Abstract

TURBULENCE, CLUMPS AND THE BETHE-SALPETER EQUATION.
The theory of two-body correlations (Bethe-Salpeter equation) is used to unify renormal

ized plasma weak turbulence theory, particle clumping, and the direct interaction approximation.

There exists to date no satisfactory statistical turbulence
theory which is both "first principles" and practically computable
(analytically or numerically). Well-known approximations are,
for plasmas, the weak turbulence theory (WTT)^ and, for fluids,

2the direct interaction approximation (DIA) . However, the WTT
3ignores clumping, and the DIA is not invariant to random

4Galilean transformations. Recently, Dupree proposed theories
3 5which he claimed improved upon both of these defects. '

Characteristic of Dupree's approach was the use of exact two-
body, rather than one-body, propagators. However, Dupree's
closure approximations were intuitive, in part, and the relation
of his work to the WTT, DIA, Kraichnan's higher order Eulerian 

4closure, and the exact evolution of the physical observables 
(statistical averages) was unclear. In this paper, we discuss 
that relation by using the powerful variational formalism of 
Martin, Siggia and Rose (MSH).^

* Work supported by USERDA, Grant No. E(11-1-3237). A preliminary version was 
published in Bull. Am. Phys. Soc. 21 (1976) 1023.
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MSR presented an important formulation of the exact theory 
of quadratically nonlinear stochastic equations. They also 

gave a systematic sequence of approximations for the self-energy 

term in the equation for the one-body propagator. Those 
equations are of disparate appearance from Dupree's, and some

what obscure two-body dynamics. However, the MSR (vertex- 
renormalized) approximations can, in fact, be cast in a natural 
two-body form. By developing and interpreting a "thermo
dynamic" relation presented but not stressed by MSR, we will 
show that two-body Eulerian closures are closely related to the 
MSR "first vertex renormalization" and to a theory discussed

4much earlier by Kraichnan. For fluids, that theory is recog

nizably not Galilean invariant and had been rejected. State
ments that closures based on the two-body formulation should be 
naturally Galilean invariant are apparently in error, without 
further qualification.

The two-body "scattering amplitude"— a moment of which 
gives the self-energy— is determined by the formally exact Bethe- 
Salpeter equation." Low-order approximations to that equation 
have unifying statistical interpretations. Thus, the two-body 
theories are Gaussian, in a precise technical sense , in a space 
whose state vector describes two-body (фф) stochastic variables.
The less detailed (generic®) DIA is Gaussian in a one-body (ф)
space. As examples of DIA of interest for plasmas, we have the

8Orszag-Kraichnan equations (Vlasov DIA), the Krommes-Oberman (КО)
9equation for equilibrium fluctuations, and Dubois' space-time 

formulation of WTT.^ The MSR techniques allow a more succinct and 

we believe, more understandable derivation of these approximations.
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*  For the quantum version see, for example, R ef.7 .



A generic stochastic equation of sufficient generality’' ' is

Э 4>(U = U (12) ф (2) + isU (123) ф (2) ф (3) 
tl

(summation convention). The essence of the MSR procedure is to
interrelate the observables by finding the simultaneous changes
induced in them by external forces. Interactions with the system
of a one-body force and a two-body force are described by

12the generating functional

Sir^ , n2î=exP+ (1) Ф (1) + ^ 2  (12) Ф (1) Ф (2) ]

Неге "+" denotes time ordering; Ф is the operator-doubled vector6 

Ф = (ф,ф = -б/бф) í (Ф+,Ф_) . The cumulants

p(1> 5 RITTT'» <5> ■ Gtl2> s 6КТТ2Г F(1>
bècome in the limit = 0 the observables F = (_ф У , С = ^ 6Ф6Ф<)> +
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(e.g., G++ EC= <^бфбф> , G+_ = R = = ( б ф / б п ^ )  ) . We have
_____.6

(Go_1-y F - E)G = 1 (la)

Z = h y GG Г= b y R4 y (lb)

r = Y  + (S£/6F) = (1 -I. GG ) _ 1 y (le)
n2

I4 E (ÔZ/6G)F , R4 = (6G/ôn2)F (ld,e)

d s - G G I4 )R4 = ( GG)s (lf)

where "s" means symmetrized. The free propagator is defined as 

G0 = (ic3t ~ Y 2  ̂ ' see MSR for matrix i0 and construc
tion of the bare coupling matrices y2 an(̂  Y3 = Y from the scalar 
U 1s. In (la), F is the self-consistent field (linearized Vlasov)

* *  Generalization to the case o f random coefficients and driving forces is straightforward 
(see Ref. 11).



term, I the self-energy term (generalized collision matrix).

R4 (12 ; 34) is the two-body "scattering" amplitude, described by
the Bethe-Salpeter Eq. (If) (not pointed out by MSR). I4 de-

3/2 3 2 -3/2scribes irreducible two-body interactions. G Г~<бф ><6ф >

is the intrinsic (measurable) skewness; it would vanish if the
system were exactly Gaussian.

MSR stated that expansion of 6E/6F in powers of Г , the
effective nonlinear interaction, was preferable to one based on
the bare coupling у and wrote (lc) as

Г = у + rGTGGr (2)
This finds a clearer interpretation in terms of the Bethe-
Salpeter equation. Define the Legendre transforms

= ln(sy - r ^ F  ; - ^ - П 2 G

We havê ''*''*' Г = / ôF^ ; define also the "two-body" extended
vertex

Г (2) E 53 ^ 2/6g3 = -  (ôR^/fiGJp

2
From ( I d ) ,  ( l b ) ,  and y = G Г , we g e t

I4 = h T G G Г (2) GG Г 
while from (If), we find

Г (2)= h (G~1G-1G-1)S + 6I4/6G (3)

Neglect in (3) of 6i4/6g -- i.e., neglect of two-body vertex
renormalization— leads to I4 = I4^  ; TG Г and, .from (lc) , to
(2). This procedure allows irreducible two-body scattering
(e.g. clumps, hard sphere collisions) to be important and
treated nonperturbatively by approximating (neglecting non- 
Gaussian corrections to) the form of the two-body interaction

* * * Thus, ordering of the bare two-body interaction for discrete plasma E12 ■ Э + ( 1 *—* 2)
3 ~  ~is non-uniform in spatial gradients. Though of nominal order 1 /nXj) <iC 1, the term is not small 

for large-angle (Boltzmann) scattering (|x i - x2l «  Лц). See Ref. 13.
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rather than its effect— that is, by approximating the inverse
R„-1 instead of the resonant function R. . It defines a DIA in4 4
a two-body space— DIA(2). The usual DIAHDIA(l) approximates one- 
body scattering G-1 by ignoring one-body vertex renormalization: 

r^Y ; this neglects non-Gaussian corrections to the one-body 
self-energy. Equivalently, it ignores irreducible two-body 

scattering entirely: R^ = (G G)g .
DIA(l) is a "renormalized weak coupling" approximation.

9For equilibrium plasma, DIA(l) reduces to the KO equation.
This neglects Boltzmann collisions, but has been quitt success

ful for treating collective hydrodynamic effects important at 
large magnetic fields.

The approximation (2), or its higher order versions ob
tained by iterating (3), assumes small skewness (near Gaussian). 
It fails when intrinsically non-Gaussian processes are important. 
Thus, the detailed structure of a divided phase space including 
both adiabatic and stochastic regions, in the technical sense of 
nonoverlapping or overlapping resonances,1  ̂ is not accessible 

from low order truncations of the vertex expansion. For the 
plasma, these would predict incorrectly that nonresonant and 
trapped particles diffuse for times longer than a trapping time.
(Study of a model problem shows that DIA(2) reduces the spurious

15diffusion from DIA(l), but does not eliminate it. ) This prob
lem is closely related to the absence in DIA(1,2) of Galilean 
invariance, essential for proper description of high Reynolds 
number fluid flow. The difficulties arise from the Eulerian 

nature of the correlation matrix G . We shall return to this 
point later.

We illustrate DIA(l) by outlining a new space-time formu
lation of WTT which shortens and elucidates the work of Dubois.1^
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[Dubois' functional derivatives are taken w.r.t. (x , t) ; the
MSR variations are in the full phase space ( x  , v ,t ).] The
Klimontovich function obeys

[3t + v • V + (c-1v x BQ + Eq + E) • Э ] N = r¡

where 3 = (q/m)3/3v , E(l) =£(12)tf(2) , ¿"(12)= - V | x^-x2 |-1 (nq) 2 ,

and л is eventually set to 0 . ' are obvious.® From
(la), we find for C(ll’) н <6N (1) ÓN (1 • )> and R(ll’ ) e (ôN (1)/6n (1* ) }  

the Dyson equations
g-1 R + 3 f • £ R = 1 , С = R ÊRT (4a,b)

where f= , "T" means transpose, the averaged particle
"propagator" obeys

g_1  = g 0_1 - E ' C 1 = V  - ° 2

and the scalar collision operators are

Z = Ü R С 5 + 0(Г3) (5a)
È = 4 Ö С C ÜT +0(Г3) (5b)

R defines the plasma dielectric properties. By rearranging 

(4a), we find

R = g (1 - 3f • «-1- £  g ) (6)

where the renormalized "dielectric function"

6 = 1 +  £ g3 f

2has appeared. WTT orders С = 0 ( 6E ) small. For nonresonant 
(NR) particles, then, g = gQ + g Eg which gives in obvious 
notation e = + en  ̂ . Using the explicit term in (5a), it
is then easy to show that en  ̂ describes just the induced 
scattering.1'10 It is clear that the present procedure effects 
the renormalization of the plasmon propagator trivially, in
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contrast to the complicated manipulations which have been pro

posed previously.^-6 It is interesting to observe that e is
0not identical, except to lowest order, to the coefficient e

in the statement of the averaged first order response <AE>

to an external field E : <ЛЕ> = (ee) "*”• E ee includes~e - к ~e
the effects of certain fluctuation-fluctuation beat terms

absent in the definition of e . The difference appears to be
2unimportant through 0«6E >) in WTT. In general, however, 

in theories of fluctuations at finite (i.e., nonlinear) level, 

there seems to be no particular reason why ee should ever appear. 
For resonant (R) particles, we cannot expand g . The

induced scattering matrix elements are thus properly integrals
17 18over only NR (к , ш ). For R , it is common to retain from

E only the renormalized quasilinear term

ZR Q L ( 1 Ï )  = ?1 ' < 6 E ( 1 > 6 E ( 2 ) >  ■ c>2 6 (2-Ï)

This cannot be justified in general. Near equilibrium, KO have 
shown that the full £[DIA(1)] must be used.9

Equation (4b) is a balance equation which states that the 
fluctuations С arise from "incoherent noise"

^ 6N6Ñ> = g£ gT (7)

in a dielectric medium £. Thus defining symbolically 

ÔË , ÓNc =-g3f•€_1*6Ё

we can write (4b) as

С = <(6Ñ6N> + (óN ^ Ñ  }  + (óÑ6Nc) + (óN ÔN ) (8)

< > Ó E > = ( 6 Ñ 6 Í >  • (6_1)T -g3f -<fôE6E> (9)
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These results are the first nonperturbative expression of 
Dupree's intuitive ideas.^ Equation (9) at equal times de
scribes the collisional (turbulent or discrete) evolution of 

the background:
-s. -, T

[ 3fc+v • V+ ((?f ) • 3 ] f = - 3 • ^ ÓE óÑ y • (б-1) + 3 • g(ôE 6E> • 3f (11)

which includes a friction term due to the noise as well as the 
usual renormalized quasilinear term. For a time-stationary 
system, Eq. (10) reduces to three-wave coupling if we assume 
DIA(l) and compute the С moments needed for E in (7) by re
taining, after velocity integration, only terms explicitly in
volving the coherent fluctuation <5NC . That is, C=^6Nc6Nc ^ ,

<SN6E> = <6Nc6È)> + <̂ 6Nc6E^> = -g3f-<6ESE>

Dubois' form for the three-wave matrix element [his Eq.(70)] 
follows immediately, here with renormalized g and e. Four- 
wave coupling follows from an obvious iteration of Eq. (9).

The iteration procedure in terms of the coherent fluctuation 
fails for particles sufficiently localized in phase space (in-

3eluding time). This is particularly likely for the equal time 
С needed for (11). Consider the exact alternative form of (8) 
or (4b):

(go"1-I)C-fgT = 3f-(óE6E>- (g3f)T + g'1 [ {¿N, óÑ>+^6 ] (12)

3 19Dupree's clump theory ' follows from (12) with the following 
approximations (which appear reasonable, but which should be 
studied further). Construct from (12) the equation for C(t,t) , 
assume DIA(l), retain only the diffusion terms of £ and 1 in 
the Markovian approximation (MA)(appropriate for a continuous
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spectrum and scales of С greater than the autocorrelation 
scales), and neglect the clump self-fields [bracketed terms in

(12)]. Then (в =0 for simplicity)

{3t+[Yl‘~+~ r  (5ll '~1+?12 -32) + (1^2)]} C(l,2,t)=(pl2+p21): ( ^ f M ^ f )

(13)
pij(l,2) = (27r) 4/dkd6j^óEóE^ku exp [-ik • ( x ^ - x  ̂  ) 3 gk (v ̂ )

3which is Dupree's Eq. (49). The cross-diffusion terms ,
D2  ̂ on the left come from E . Solution of (13) gives the 
clump contribution to ^  ÔN6NУ , a process additional to the n- 

wave processes. Integrals in the n-wave terms should exclude 
the phase space volume over which ^6N6N^c  ̂ is significant.
Notice that since we assumed DIA(l), clumping is contained in

g
the equations of Orszag and Kraichnan. We believe that this 
observation is new.

Solution of (13) is effected by a Green's function tech
nique.3 For consistency, one verifies that this function is just
the two-body propagator predicted by the (+H--) component of
(If) with the weak coupling approximation I ^ ° ^ - y G y  . It is 
not necessary to invoke this fact in solving (13), though it 
aids understanding. Replacing Г by y in 1^^  means that we 
ignore "clumping of clumps", presumably a weak effect.

Nonlinearity dominates for the Navier-Stokes fluid at high 
Reynolds number, or the 2-D guiding center plasma; weak coupling 
is inappropriate. Furthermore, DIA(l) is not invariant to random

4Galilean transformations, hence fails to properly describe the 
inertial and dissipative subranges. Dupree argued^ that "the 
use of an average two-particle propagator ... appears to in
corporate [Galilean invariance] in a natural way." In essence,
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he argued that such a theory would contain two variables natu
rally descriptive of an eddy: a center-of-mass coordinate R and 
a relative coordinate p . Convection of an inertial range eddy 
would be described by R , motion of which would effectively 
define a Lagrangian frame in which internal eddy distortions, 
described by p , could be computed. The eddy lifetime would be 
the time for two fluid elements to relatively diffuse, in p ,
an eddy size apart. Aspects of this relative motion were

20discussed m  an unrenormalized context by Krommes. A

systematically renormalized theory which treats on equal foot
ing both centrix and relative motions is DIA(2). In fact, 
straightforward calculation which we omit shows that Dupree's 
equations follow, with various practical approximations like 
MA, from (If) with 1 ^ ° ^  yGT , a simplified DIA(2) . The result 
is a relative diffusion equation, quite similar to (13), for the 
two-body propagator (++ ; — ), except that the diffusion co
efficients are defined in terms of R^ (the Г in y G Г) instead 
of the weak coupling factorization R^ = (G G)g . This does 
introduce a plausible eddy lifetime, and is Galilean invariant. 
This is interesting, since we find that DIA(2) has been previ
ously discussed and rejected.

DIA(2) in the vertex form (2) was first derived by
Kraichnan, who used opaque graphical techniques to discuss his

21model stochastic oscillator. He showed that, for the sta
tionary two-time R(t -t1 ), DIA(2) was numerically more precise 
than DIA(1) . However, he later generalized that model to an 
idealized convection problem which modeled correctly the 
Kolmogoroff ansatz that "the large-scale structures unquestion-

4ably convect the small scales without distorting them." He 
concluded that for the equal time moments pertinent to energy
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transfer, the Eulerian DIA(2) was still seriously inadequate; 

an infinite number of Eulerian are needed to describe pure con
vection. In other words, pure convection is intrinsically

non-Gaussian. Kolmogoroff spectra appèar to no order in
22Eulerian vertex-renormalized perturbation theory. As

4Kraichnan notes, it is true that DIA(2) should be very accurate 
if the wavenumber integrals are modified ad hoc to remove the 
spurious convection effects. However, this asystematic pro
cédure assumes, rather than justifies, the Kolmogoroff hypo-

23 ' 2 2theses. We echo Kraichnan's call for a Lagrangian theory.

In DIA(2), as described by Eq. (2), the equal time moments 
depend intrinsically on the two-time correlations. This

4feature was retained by Kraichnan in his study, and is, in fact, 
the basis for his pessimistic conclusions concerning Eulerian 
theory. Dupree, on the other hand, makes the MA and derives 
closed equations for the equal time quantities. In contrast to 
the strict DIA(2), his results are Galilean invariant. However, 
the MA is not readily justifiable here. It is not clear that 
Dupree's (complicated) equations will be quantitatively more 
accurate than simpler Galilean invariant approximations which
have been proposed; for example, truncation of wavenumber

4 23 24integrals, or the Test Field Method. ' Clearly, more
research is called for. The recent work of Weinstock may be

25of considerable help here.

There are situations for which the vertex expansion is
apparently well suited. Such are problems of stochastic in-

14stability at high stochasticity. These can be treated by 

identifying ф as the stochastic Liouville function L(J,0,t) 
of the relevant actions J and angles 0 . The relevant averag-
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ing functional ( forces the rotational invariance appropriate 

to the stochastic limit:

<A(jr . jn, er  .en, t)> =/de 'Ä(jr . jn, 9l-en+9 •,.. e ^ - e ^ e  •, e • ,t)

for arbitrary function A of n angles (e.g. A= 6L<5L); superbar
denotes average over initial conditions. Using this prescription,
a successful DIA(l) renormalization of a stochastic instability
problem of relevance to plasma heating has already been per-

15formed. Similar notions permit systematic treatment of er- 
godic magnetic field line motion.

The functional thermodynamics of MSR is of great utility. 

However, it does not resolve the current interest problems of 

Galilean invariance and adiabaticity. The equations are a 
supplement to, rather than a substitute for, physical intuition.
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Abstract

SPHERICAL IMPLOSION DUE TO COALESCED WEAK SHOCKS IN PLASMA: METHOD 
OF APPROXIMATE SELF-SIMILAR SOLUTION.

A  method to determine an approximate solution for the problem o f spherical implosion 
in an ideal gas is described in detail. This solution may be used to investigate the nature of 
spherical implosion in a plasma, considered to be an ideal gas with specific heat ratio Cp/Cv = 5/3, 
due to coalesced weak shocks. Before coalescing, the process is almost isentropic, and the 
linear acoustic approximation can give a fairly accurate result. However, when the coalesced 
front reaches the centre of the sphere, the non-linearity becomes dominant. The solution near 
the central singular point is then determined by the method o f self-similar solutions of the 
fluid equations. Such shocks may be produced in a plasma because o f surface ablation generated 
by pulsed laser beams or pulsed ion beams or the soft X-ray generated by the absorption of 
relativistic electron beams. For a given deposited shock energy, the resulting thermonuclear 
fusion gain for a DT plasma has also been calculated.

1. INTRODUCTION

Before describing our analytical m ethod of finding an approxim ate solution 
to the problem of spherical implosion due to  coalesced weak shocks in a plasma, 
we begin by presenting the exact m athem atical statem ent of the problem. At 
time t = tj, let an ideal gas occupy a spherical region of radius R, w ith pressure p0, 
density Po ar>d gas velocity u 0 =  0. Let a uniform radial pressure p(t) be applied 
at that tim e at its surface and switched off later at time t f . In particular, we are 
interested in considering the special pressure profile p(t) which can generate a 
large number (m) o f weak non-overtaking compression shocks, moving with 
increasing speed towards the centre, such that all these shocks merge at a given 
radius rm from the centre, precisely at the same time tm. The problem is to  find 
the distribution of pressure p(r,t), mass density p(r,t) and the gas velocity u(r,t)
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as functions of the radial distance г and time t, for t >  tm. On physical grounds, 
the front o f the coalesced shocks is expected to  move towards the centre, with 
pressure and density increasing behind the front. After reaching the centre, the 
front will o f course get reflected, but at any fixed radial distance r in the gas, 
density and pressure will continue to rise until the reflected shock front passes 
through the point. If t = 0 is defined to  be the time of reflection of the front 
from the centre r = 0, it is obvious that for positive times the solution behind the 
reflected front is of the explosive type.

Recent interest in solving the kind of model problem described above has 
arisen in connection with the investigation of an inertial confinement scheme [ 1 ] 
for very high density therm onuclear plasmas due to  ablative absorption o f energy 
from pulsed lasers or pulsed relativistic electron beams or from suitable ion 
beams. While considering the feasibility of such a heating and confinement scheme, 
it became clear quite early in the game that in order to  minimize the level of the 
input energy required for obtaining a viable fusion gain factor, one has to  compress 
a solid D T pellet o f size, for example, 10_1 cm, by a factor 103 or 104 before it 
is heated to  therm onuclear temperatures (for details see Ref. [2]). Using the 
m ethod of self-similar solutions near the centre of the sphere, the problem of 
spherical implosion and reflection of a single strong shock has been solved numeri
cally by Guderley [3] and by Landau and Stanyukovich (see Ref. [4]) more than 
thirty years ago. G uderley’s solution was for the gas with specific heat ratio 
7 = 7/5; since then Goldman [5], among many other workers, has obtained the 
numerical solution for 7 = 5/3. However, the maximum compression for 7 = 5/3, 
after the reflection of a single strong shock,is found to  be only about 32. Based 
on Goldman’s result, and assuming as a first approxim ation the fully ionized 
D T plasma (equal densities of D and T) to  behave as an ideal gas o f 7 = 5/3, 
Brueckner and Jorna [2] have calculated the resulting fusion gain factor as a 
function of the input shock energy to  find

EsHOCK — 40.9
E f u s i ó n

3
Ps

E s h o c k Po
megajoules ( 1)

where the expression has been normalized to  the solid DT density 
ps = 0.213 gram /cm 3 (num ber density ns = 4.7 X 1022 cm-3). For obtaining a 
viable gain factor Gp = E fu s ¡0n /E sh 0CK> the input shock energy thus turns out 
to be too large.

To circumvent the need for handling and depositing extremely high input 
energy in a very short time at the pellet, it has been suggested [ 1 ] that one should 
arrange to  produce ablation of the type tha t gives rise to weak coalescing shocks, 
described earlier, instead of a single strong shock. In such a case, the compression 
process is almost adiabatic until all the shocks coalesce at the radius rm at time tm, 
thus minimizing the shock energy. As already discussed, there will be further



SPHERICAL IMPLOSION 423

compression and heating of the plasma as the merged front moves towards the 
centre, and there will be a sudden jum p in its density and tem perature to  still 
higher values when the reflected front reaches the observation point. Since, 
immediately after the reflection of the front, the pressure and tem perature become 
extremely large near the centre, it can initiate nuclear fusion reactions there if 
the initial parameters are chosen properly. The fusion gain can be maximized 
further if the radius of the resulting central ho t region is comparable to  the range 
of 3.5-MeV a-particles generated in the nuclear fusion reactions, because in such 
a situation further heating o f the compressed pellet will be due to  these absorbed 
a-particles. Consequently the reflected front will be accompanied by a powerful 
nuclear burn wave moving outward at a supersonic speed so that m ost of the 
fuel will be burnt before the disassembly time of the exploding plasma, w ith a 
minimum of input energy to  be supplied by external means for compression and 
heating. This is the ‘implosion-cum-self-heating’ scheme [1 ]. For density 
p = 103 p s, and the electron tem perature Te corresponding to  10 keV, the 
range [6] of 3.5-MeV cc-particles is indeed small (< 1 0 -3 cm) if the radius of the 
compressed pellet is about 10~2 cm, so the scheme seems to  be viable.

It is clear from the statem ent of our mathematical problem that we are not 
including any energy absorption by the plasma due to  the absorption of 
«-particles generated in the nuclear reactions. The solution of our problem can 
therefore only give the state of the plasma, i.e. the distribution of the density, 
tem perature, etc., just before the nuclear burn wave is ignited. However, for 
systems in which fusion energy deposition (self-heating) in the plasma itself is 
negligible, we can also calculate the fusion gain factor as a function of the input 
shock energy for the case of weak coalescing shocks, similar to  E q .(l)  for the 
case o f a single strong shock. In the next few sections we introduce the non- 
dissipative fluid equations relevant to  our problem, discuss the procedure of 
solving them analytically by using the m ethod o f approxim ate self-similar 
solutions [7], and finally apply the resulting solution to  calculate the fusion gain 
factor in a DT plasma, in the absence of self-heating.

2. SELF-SIMILAR EQUATIONS AND APPROXIMATE INTEGRAL CURVES

2.1. Fluid equations

In the absence o f any dissipation and external energy source, the fluid 
equations for one-dimensional spherical m otion are
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Э (  p u :
— ep + —
at V 2

I  A
r2 Эг

,  i p u ‘  
r u \pe + —  + p (4)

where u is the radial velocity and e is the energy per unit mass o f the gas. Because 
of the assumed spherical symmetry, the velocity u, the energy e, pressure p and 
the density p are functions of r and t only, where r = 0 is chosen to  be the centre 
of the sphere and t = 0 is chosen to  be the time when the coalesced shocks reach 
the centre of the sphere and become reflected. The set o f equations (2) -  (4) has 
to be supplemented by the initial boundary conditions and the equation of state. 
For an ideal gas obeying the Clapeyron equation, we o f course have

С
: CVT = —

V P p 1

R  p (C p -C v )  P ( 7 - 1 )  P
(5)

In general, using the continuity equation (2) and the force equation (3), the 
energy balance equation (4) can be rew ritten as

de d / 1\  . d Э Э
---  — ~ P — I — ) Q ext j — =  — + U —
dt dt V p / dt a t Эг

(6)

where, in the absence of external source term, Q ext = 0- Using the therm odynam ic 
relation for entropy S,

T ds = de + pd (7)

the energy equation (4) is therefore equivalent to 

dS Qext

dt
=  0 (8)

implying an isentropic m otion. Thus for an ideal gas the energy balance equation 
reduces to

(£n pp'T') + u (£n pp '7) = 0 
dt Эг

(4 ')

since from (5) and (6) the ideal gas entropy is 

S = Cv 2n pp"^ + const (9 )

Before we consider the self-similar m ethod of tackling spherical shock 
reflection from the centre, let us see what is the difficulty in using the linear
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acoustic approxim ation for Eqs (2) -  (4) to  investigate this problem. In terms of 
the sound velocity с defined by

c2 =
Э р \ 7Р ( 10)

Kdp/S p

if we consider only small variations of pressure,etc., such that 

p = p0 + 6p, p = p 0 + Sp, u = 0 + u

( I D
5 p < lp o , 8p<p0, u < c 0

in the linear approxim ation, the velocity potential satisfies the spherical wave 
equation

1  -  1 1  ( г  п ъ
cl at2 г2 Эг V a J  ( }

where

_ Э 0 Ъф Po Эф
u =  — ; ôp = - p 0 — ; бр = -  — (13)

Эг 9t Ср at

The general solution of (12) gives

0 = “ [ F 1( r - c 0t) + F 2(r + c0t)] (14a)

5p = ^  [F ;( r -C 0t ) - F ; ( r + C 0t)] (14b)

Sp = 5p/c2 (14c)

where the nature of arbitrary functions Fj and F2 is determ ined from the initial 
boundary conditions. According to  the above solutions, the velocity, pressure and 
density grow indefinitely at the centre of the sphere, but that invalidates the 
linearization of the fluid equations. However, these solutions may still be appli
cable at large r while the  disturbance is weak.

2.2. Initial boundary conditions

It is of course well known that in the absence of dissipation any compression 
wave always develops into a shock wave, which is a surface of discontinuity in
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pressure, velocity and density of the fluid. If a shock wave is moving with a 
radial velocity D, towards the region specified by p 0, p 0 and u 0, from the region 
specified by p b  p x and u b  a simple integration of Eqs (2 )—(4) in the frame moving 
with velocity leads to  the relations:

(Ui —D j)p i = (u0—D ^P o  (15a)

Pi + P iO ^ - D j )2 = Po+PoC uo-D j)2 (15b)

ei + K u i-D j^ H -  — = e0 + | ( u 0- D 1)2 + — (15c)
Pi Po

Let us now consider a large num ber of non-overtaking shocks moving radially 
towards the centre of the spherical gas, so that the first shock moves between the 
region labelled 0 (the undisturbed region, w ith pressure p 0, density p0, and u0 = 0) 
and the region labelled 1 (pressure p b density p 1; and gas velocity u t , depending 
very weakly on r and t), w ith shock speed Ü! (negative), etc. In general, the nth 
shock wave moves w ith velocity Dn (negative) across regions labelled n -1  and n. 
Equations (5) and (15) then give the well-known jum p conditions (see e.g. [8]) 
across each shock wave, in terms o f the pressure increment across the front [7]. 
For a single strong shock wave w ith pj/po 1, this reduces to

Pi _ 7 +1 
Po 7 - 1

u , =  -  c0

D i — c0

= 4 for 7 = 5/3

1/2 / р м / 2

Po/7 ( 7 + 1 )  

7  +  1

2 7

1/2 / р М / 2  

\ Р о /

(16а)

(16Ь)

(16с)

On the o ther hand, if we have a large number of weak shocks (total num ber m) 
such that

Pn
-------- 1 = | S K 1, l < n < m
Pn-1

(17)

successive iterations of discontinuities across these shocks lead to  [7]
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7 - 1

Pm\ 27
Po '

7-1

(18b)

D m  — C0
Р п Л 2?

(18c)

where we have assumed that

7-1

( (18d)

Thus the process is almost adiabatic, until these shocks coalesce at the time tm at 
a distance rm from the centre. Equations (18) determine the boundary conditions 
at the coalesced shock front at time tm for its subsequent m otion.

2.3. Self-similar equations

Although the exact integration of the non-linear fluid equations (2 )—(4) for 
the spherical case is not possible, the solution near the singular point r = 0, where 
the linear approxim ation fails, can be investigated quite accurately. In fact, if 
t = 0 is the time for the coalesced weak shock.or the single shock, as the case 
may be, to  reach the centre, it is physically consistent to  assume that the position 
of the incident shock front for small negative t  can be expanded as

where q’s are arbitrary positive numbers and where a is the smallest value o f q 
that appears in the expansion. Thus, for a sufficiently small neighbourhood o f the 
singular point t = 0 , we can keep only one term  in the expansion, i.e. represent 
it by a parabola o f order a . In such a case we have two basic scales, p0 and R i(t),

the pressure scale. Because o f  the scale invariance o f the fluid equations [8], we 
can then define reduced dimensionless fluid variables in such a way that these 
are functions of r/R j(t) only. In other words, if R i(t) = £(- t)a , the m otion is 
self-similar. If  |t0l is the time taken for the incident front to  reach the centre from 
a point r in the sphere (r <  rm), i.e. if

(19)

for density and length; R i(t) can be taken to  be the velocity scale, and p 0 R¡ as

/ r V/«
R l ( t 0) = r = * It0la , l t o l = ( j j ( 2 0 )
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we can introduce the similarity variable s defined by

S = l ^  (21a)

(_ s )’a = ( fo r  s <  0 оп1У) ( 2 1 b )R i(t)

so that the position of the incident front is represented by s = - 1 .  N ote that 

R l(t) = D i ( r ) ( - s f - 1

(22)
D i(r) = -a^la r (*/“ ^

7 = -  IDi(r)l (23)
t as

where |Di(r)| is the incident front speed. Since at the origin it is expected to go to 
infinity (all shock energy concentrated at a point), in our case a is expected to  be 
less than 1. If we extend the similarity argument to  the distance rm , where weak 
shocks coalesce, |Di(r)| is related to  Dm o f (18c) by

IDi(r)| (r m \0 /a )  1 (24)
|Dm|

In our problem, for time t >  0, one can also show for the reflected wave
that

R R ( t ) “ ta (25a)

R R ( t )  = DR (r)sa - 1, DR ( r ) = ^ T ^  (25b)

— —  (for s >  0) (25c)
KR(t)

where s* is a constant greater than 1. The position of the reflected shock fron t is 
now given by s = s*, which is greater than 1, because the absolute speed of the 
reflected front, which has to move outwards in the gas moving inwards, is slower 
than the incident front.
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In terms of the reduced dimensionless variables G(s), V(s) and Z(s), defined
by

p = PoG(s)

r |Di(r)|
u = -  V(s) = V(s)

t as

c2 = -  Z(s) =
|D i(r)|2

Z(s)

the fluid equations (2), (3) and (4 ') reduce [7 ,8] to

dV d Cn G
+ (V —a) Ti—гг = 3 av

d Cn |s| d Cn |s[

(26a)

(26b)

(26c)

(27a)

( V - a )
dV

d Cn |s| y d Cn |s| y d  £n |s|
Z d C n G  1 dZ 

+  -  ------------  +  ■
2 Za

+ V ( V - l ) a (27b)

(T- D Z
d ßn G dZ 2 Z (V -1 )
d Cn |s| d Cn ¡si (V -a )

Note that, in terms o f the reduced variables,

_____ _ Z(s)G (s)
p = p 0 |D i(r)|2 — — —

(27c)

of s 7

Z(s) 
a 2 s27

(28)

(29)

where M/2 is the average mass of the particles in the gas. At the incident shock 
front (s = — 1) the boundary conditions (18) reduce to

G(—1): Pm Y /T
P o/

; V ( - l ) ;
2 a

7  +  1

- I ) 2 a 2
( з а д

With the rearrangement of terms, the self-similar gas equations (27) can be 
reduced to  [7]

d Cn |s| 
dV

( a - V )2 -  Z

3V-
2 ( 1- a )

V ( l - V )  (a - V )

A(Z,V)
A ,(Z ,V )

(31a)
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F IG .l . r-t diagram showing the incident and reflected shock fronts, for t >  tm , r <  rm . Here 

t = 0 is the time o f  reflection o f  the front from  the centre, where the shock speed goes to 

infinity. The reflected front, however, moves slower than the incident front.

d ß n Z  (7 - I )  ( 3 7 V - V - 2 )  Д (Z,V)
dV (a — V) ( a - V )  A ,(Z ,V )

(31b)

G = const ( a - V ) 2 0 ' “ ) s-6 “ Z3a (3a 7-2 -a)
(31c)

We have to  consider solutions of Eqs (31a) and (31b) in regions A, B, C, D of 
F ig .l. O f course in the region A, which is ahead o f the incident shock front, the 
gas is undisturbed and the solution is already known (Ga = 1, u = 0, p = p0). In 
the region B, which is behind the incident shock front, one has to  determine the 
integrals of (31) in such a way that they satisfy the boundary conditions (30) at 
the shock front. N ote tha t Z(s) is always positive in all regions, since from (26c) 
it has the same sign as the square of the sound speed. However, V(s) can have 
both signs. In the region B, since u is negative and t <  0 (or s <  0), because o f Eq. 
(26b) V(s) has to  be positive here. The solution in the region С which is ahead of
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the reflected shock front (t >  0) can be obtained from causality argument 
(analytically continuing from —t to  +t), once the solution in the region В is known, 
because it is still unaffected by the reflected front. N ote that now s >  0, i.e. 
t >  0, so that in this region V(s) becomes negative. In fact V(s) changes sign 
sm oothly from +ve to  —ve, going through zero at s = 0 , the boundary between the 
regions В and C. However, u does not go to  zero there. The solution in the 
region D which is behind the reflected shock front has to  be determined by solving 
(31) again, but now at the reflected shock front (at s = s*), one has to  satisfy the 
regular shock jum p conditions across the region C. In terms of the reduced 
variables these jum p conditions (obtained from Eq.(15)), at s = s*, are:

VD = Vc +
Z c - ( V c - a ) 2

(Vc —a)7+ 1

(32a)

g d  = g <
(Vc ~ qQ 
(VD- a )

(32b)

where

(7~ D 2 

( 7 + D 2
ZD = 1 + ■

(7 - l ) ( V c - a )2

2 y

( j ~  1)
(Vc- a ) 2- Z c

T  =  l i ms*
DR(r)
|D i(r)|J

! u(r,t = 0) _ [ l + ^
|Di(r)|

r ->0
as

(32c)

(33)

Also, in the region D, the solution m ust be of explosive type, i.e. 
d £n | s r a /dV >  0, and a particle located at the origin m ust remain at rest. In 
this region, u is positive, and hence V(s) is also positive.

2.4. Integral curves

To obtain integral (Z — V) curves from (32a) and (32b) in different regions, 
let us examine these more carefully. We know tha t physical variables u, с and p 
must be bounded at a finite r, so tha t the solution m ust satisfy the condition

V -*■ 0, Z->-0, ass-»-0 (34a)

In fact, for small V, as s -»■ 0, it can be shown by examining the self-similar 
equations that

Z ~ V 2 (s -»• 0) (34b )
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F IG .2. Possible physical integral curves in different regions o f  the Z - V  plane, and the location 

o f  singular and initial boundary points. Only solid curves represent possible solutions.

Further, since the solutions o f the gas equations m ust be single valued, ßn |s| as a 
function of V should not have any extrema, i.e. d ßn |s| dV should not become 
zero. However, the determ inant A(Z,V) is equal to  zero on the parabola (see Fig.2),

Z = (a  — V )2 - (35a)

The boundary point A in the Z — V plane, at s = - 1 ,  is usually above this parabola 
(for the coalesced weak shocks it is almost on the parabola itself), and since the 
integral curve has to  pass through the origin, according to  (34a), it implies that it 
must cross the parabola. To ensure single-valuedness (see (31a)), it must therefore 
cross the parabola on the point where

A ,(Z ,V ) = Z 3 V -
2(1 —a) 

7
- V ( l - V ) ( a - V )  =  0 (35b)

also. Of course, V = a, Z = 0 is the trivial solution of the self-similar gas equations, 
but this is useless since it cannot satisfy the boundary conditions (30) at the 
shock front. However, Eqs (35a) and (35b) determine two more singular points 
P2 and P 3 (see Fig.2) as solutions of the equations

( a - V 0) 3 V 0 -
2( 1- a )

7
= V0(1—V0), Z 0 = (a  — V0)2 (36)
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In fact, it is the larger o f the two roots V0 which determines the singular point P3 
where the integral curve in the region В has to  cross the parabola (35 a) in going 
to the origin [3]. The smaller positive root V0 determines the singular point P2 
which lies on the integral curve in the region D if extended towards the parabola.
In actual practice, the physical integral curve in the region D starts beyond this 
point to  satisfy the shock conditions across the regions С and D at s = s*.

2.5. Solution in region В

While finding the integral curve in the region B, the value of a gets determined 
uniquely, since for only a particular value of a. can one go smoothly from the 
boundary point A to  the singular point P 3 and then to  the origin 0, as drawn in 
Fig.2. But for coalesced weak shocks, the boundary point A at s = — 1 (determined 
by Eq.(30)) is approximately on the parabola itself; it m ust therefore coincide 
with the singular point P3 o f Eq. (36). This immediately determines a uniquely.
We find

For more general initial boundary conditions, e.g. for the case o f a single strong 
shock, A is not on the parabola, and a can be determined only after integrating 
Eqs (31a) and (31b).

It has to  be noted tha t one can immediately integrate (31b) if the right-hand 
side of (31a) can be w ritten as a function o f  V alone. In fact, at the point P3, a 
self-consistent evaluation of the limiting value shows

Thus, it is not a bad approxim ation to  make an expansion of F(Z,V) in V, 
which retains the forms (38) and (39) at P 3 and 0, respectively. In the general 
case, since F(Z,V) differs from 1 at the boundary point A, a few terms in the 
expansion are always necessary to  fit that point also. However, for the case of

( 7 +  1 )  ( 2 7 - l )
öl =  -------- ; -----------------

(47 - 7 _ 1 )
= 0.736842 f o r 7 = | (37)

-----*■ 1 (approx.) (38)

and the same function at the origin behaves as

F(Z,V) (39)
V - + 0  

Z -*■ aV2
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coalesced shock waves, in which the point A coincides w ith the point P3, it is 
enough to  assume

A(Z,V) _  (o -V )
A,(Z,V ) V (V -l)

everywhere. Integrations o f Eqs (31) and the boundary conditions (30) then 
immediately lead to

(40)

Z(s) = IKJ

G(s) = |K2|

y 2 ( i - V ) 37-3

( a - V ) ? - 1

( 1 - V ) 3

(a -V )

s = - | K 3| V d - V ^ 1'«)/“ 

( 7 - D 2
IK J =-

a ( 7 - l )  (7 + I)3
(7 + 1) (7 + 1 — 2a )3

7-1

IKj =  i^HL)lh
Vp0/

7 + 1
7+1  — 2a

( 7 - 1 )  
(7 + 1)

(41a)

(41b)

(41c)

(4 Id) 

(4 le)

|K3| =
7+1  —2a 7 + 1 1/7

2a 7 + 1—2a (4 If)

where a is given by Eq.(37). It can be verified that the solution (41) when substi
tuted in the function F(Z,V) o f (38) shows tha t in the entire range, - 1  <  s <  0, F 
differs from 1 by at most 6%. Hence it should be an acceptable approximate 
solution in this region. Note that as V -»• 0, s 0, as required.

2.6. Solution in region С

As already discussed, if the solution is available for the region B, causality 
demands that the same solution holds in the region C, if we change —t to  + t, i.e.
—Is! to  + |s|. It o f course implies tha t V changes sign now from positive to  negative 
values. From Eq. (33), the solution in the region С can be continued only till 
s = s*, where

lim 1 +
V(s)

as

-1 a  |K3| 
a |K 3| - 1

(42)
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if we use the approxim ate solution (41). For 7 = 5/3, Eqs (37) and (41 f) lead to  
s* =  2.277 for the case of coalesced weak shocks. We have found tha t the 
extended solution (41) in the region С is also quite good, in the sense that F(Z,V) 
of Eq.(38) still does not differ too  m uch from 1 in this range, but the value of s* 
is a sensitive quantity  and its exact value may well be slightly different from the 
value that we obtained.

Once the value of s* is known, from the solution (41) for the region С (with 
s positive, V negative), we can immediately obtain Vc, G c and Zc ats=s*. Equations 
(32a), (32b) and (32c) then give the boundary values a t the shock front in the 
region D, i.e. Vd, G d and Zd- For 7 = 5/3, we find

Vc =  — 0.80, Gc =  31
7 - I
7 + 1

P m \

P o /

1/7
Zc as 0.25 (43)

VD = 0 .1 9 , Gd = 9 0
7+1

Pm Y1/7

Po
ZD ss 0.90 (44)

2.7. Solution in region D

The integral curve in the region D has to  be the explosive type, i.e. here 
A(Z,'V)IAl (Z,V) of Eq.(31a) has to  be positive. Also, as s ->• °°, either t ->■00 or 
r -> 0 . From  (26c) one has therefore Z(s) -*■ °°, as s -*■ whereas from (26b), 
V(s) is finite or zero as s -»■ According to  Fig.2, note that V cannot exceed 
the roo t V0 corresponding to  the  singular point P2. In fact, an examination of 
(31a) shows tha t as s -*■00, Д /Д 1 will be positive only if

lim Z(s) о®
s -* ■ 00

lim V(s) —► =  V(o°) =  0.105 for 7 = 5/3 (45)
З7

s -* ■  ° °

lim 3 Z [V -V (~ ) ]  <  V (oo)[l-V (oo)] [a-V(oo)] (46)

s -»■ 00

Since the range of variation of V(s) from Vd = 0.19 at s = s *  to  Y(°°) = 0.105 
as s -► 00 is very narrow, one can assume w ithout too m uch error that it has a 
constant average value
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FIG .3. Plot o f  reduced mass density (left scale) and reduced temperature (right scale) as a 

function o f  the similarity variable s = t/|tol; |t01 =  (r/£) lla . Here £ is related to the shock- 
speed parameter (pm /po) through Dj(r) and D m (see text).

throughout the range. This immediately leads to  the solution

3Vaa tt(2+Va-3 7 V a)

f s \ a ~v a / s \  (“ -V .)
G = GD y  , Z = Z D y  (48)

in the region D. A more detailed solution, which takes care of the variation of
V approxim ately, is given in Ref. [9]. For m ost purposes, however, the approxi
mate solution given by Eqs (47) and (48) should be good enough.

The solutions for all the regions for density p and tem perature T as functions 
of s are plotted in Fig.3, essentially in term s of the shock param eter (pm/p 0) at 
the coalescing radius rm. Here M/2 is the average mass of the ion-electron system 
in the gas, so that p/p = kßT/(M /2), and D i(r) is related to  the shock parameter 
(Pm/Po) at rm by Eqs (18c) and (24). One finds tha t the density of the gas after 
shock reflection can be much higher than the case of a single strong shock, 
depending upon the value of the shock parameter (pm/p0) for the coalesced weak 
shocks at rm. For initial compression (pm/Po)3/s — 5 X 102, the final compression
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p /p0 reaches the value 104. The heating is also maximum near r = 0, for t >  0, i.e. 
just after the shock reflection from the centre, and the shock param eter can 
always be adjusted so that the tem perature reaches 5 to  10 keV. N ote that from 
our self-similar solutions as a function of s, all the gas variables can be determined 
easily for any r and t in the physical region.

3. FUSION GAIN CALCULATION FOR A DT PLASMA

We now apply our approxim ate solutions obtained earlier to  the case of a 
DT plasma. In the first approxim ation [2], we consider the fully ionized DT 
plasma to  be an ideal gas, w ith common electron and ion tem peratures T, and the 
specific heat ratio y = 5/3. With the num ber densities no = n j  = n/2, ne = n, one 
therefore has

p (M n+m en) M/2 M/2

where M is the average mass of D and T nuclei and M/2 is approxim ately the 
average mass of the ion-electron system.

In the absence of self-heating and absorption of the a-particles in the pellet, 
in each nuclear reaction

D + T —»■ n + a  + W (= 17.6 MeV) (50)

17.6 MeV of the fusion energy is released. If n<av>/2 is the rate of this reaction, 
which depends upon tem perature and p, and hence on r and t in the pellet, the 
fusion energy released during the whole process is

Since the integrand is highly peaked near s = s*, when the tem perature is maximum, 
one can approxim ately rewrite Eq. (51) in the form

p = n¡kjjT + nekßT = 2nkßT (49a)

p 2nkßT kßT _  в
(49b)

(51)

0

oo oo

(52)
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Similarly, the input shock energy

EsHOCK ~ 4n I dr r2 

0

/ i p u 2 +
7-1

. « . л . ? . « - »  [J o(5«+l) (53)

Since from Eqs (29) and (24)

kBT(r,s*) =  0(r,s*) = y  ( r )2' 2/" ¿2/e
Z(s*)
s * 2 7

one has

r =
2 s*2 7

M Z(s*)£2/a

2a-2 a
> 2a—2 (54)

so that the integration over r in (52) can be converted [2] into the integration 
over 0. In  the tem perature range of interest, <av> has the form [2]

To

e2/3
<<JV> =  exp ( - B /0 1/3) (55)

where В =  19.33 (keV ) 1/3 and a0 =  4 X 10-12 [cm3/s] [keV]2/3. One can then 
use the saddle-point m ethod [2] to  integrate over в in the fusion energy calculation. 
For our case, we find that the saddle-point tem perature

0sd = 0.56 keV (56a)

with the corresponding value of the radius
a

rsd —
MZ(s*)

2 a - 2
a

^ s d
2 a -2 (56b)
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This leads to

4-n 3 P о <a v > ( at 0 sd)W
E fu s ió n  = y  rsd ---------- -------------  lt0(rSd)l

X 9 a
( l ^ j

7 г ( 1 - а )

13 —a / ds G2 (s) (57)

Using similar arguments, the value of time t appearing in the expression (53) 
can be taken to  be equal to  [2]

t =  lt0(rsd)l J ’f j
1/a

(58)

A fter using our solutions in the region D, one can perform the integration 
over s for calculating bo th  E f u s i ó n  and E s h o c k  • We find that in our case of 
weak coalesced shocks,

^SHOCK = 35
E f u s i ó n

E s h o c k

?  f P m Y 2 l 4  

Po
MJ (59)

as opposed to  the expression (1) for a single shock. Thus, depending on the com
pression ratio (Pm/Po)1', >̂ a t the time o f coalescing a t r  = rm, coalesced weak 
shocks can be m uch more efficient.

We conclude this discussion by arguing that our approxim ate m ethod of self
similar solutions can also be used for other complicated initial boundary conditions, 
to get an idea of the tem perature and density profiles as a function of t and r, for 
spherical systems. Our solution in the region D has of course to  be modified if 
there is absorption of a-particles after the reflection of the shock from the centre. 
For such a situation, our solution in the region D still gives the vital boundary 
values to  be used in tha t calculation. O ur m ethod has recently been extended to 
combinations o f weak shocks and a single strong shock, in spherical as well as 
cylindrical geometries [9].
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Abstract

THEORY FOR STEADY STATE OF RF PLUGGING.
General formulation of the steady state obtained by an r.f. confinement o f plasma is 

presented within the framework o f the collisionless two-fluid model. The effect o f plasma flow 
is taken into account by introducing modified scalar and vector potentials, modification being 
due to the centrifugal force and the Coriolis force, respectively. A  simple variation principle 
is derived to determine the steady state using the Clebsch representation for the modified 
vector potential. For the axisymmetric case, expressions or equations for quasilinear modi
fication o f the average quantities are derived in the weak-field approximation. Results of 
numerical calculation for the r.f. plugging applied to a line cusp are presented and discussed.

1. INTRODUCTION

There are two trends in the research on radio-frequency (r.f.) confinement 
of plasmas [1]. One is to  confine the plasma by an r.f. field alone, i.e. to  establish 
the entire confinem ent of the plasma by the ponderom otive force of the r.f. field 
of a cavity eigenmode. Experiments [2] and com puter simulations [3 ,4] were 
carried out in the region of radio-frequencies higher than the cut-off frequency, and 
the results indicate that a steady confinem ent is possible when the r.f. field 
pressure, | ^ |2/87t, becomes comparable to the plasma kinetic pressure, nT [4].
For a therm onuclear fusion plasma of density 1014/cm 3 and tem perature 20 keV, 
the field amplitude required for the confinement becomes 3.8 mV/cm.

The second m ethod is to  confine the plasma by a combined use of an r.f. 
field and a static magnetic field in a linear machine. Here the r.f. field is used to 
stopper the particle outflux along the magnetic field. This m ethod has the 
following two advantages over the first. First, in the presence of a magnetic field 
there exist several eigenmodes inside the plasma, and by adjusting the applied radio
frequency to  one of the eigenmode frequencies one can produce a resonant

441
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enhancement o f the r.f. field inside the plasma, thereby permitting an efficient 
confinement by a relatively weak applied r.f. field. Here, caution is required to 
avoid the cyclotron resonance which destroys the adiabaticity o f the particle 
m otion and hence the confinement efficiency. The second advantage is that 
because of the magnetic field we can strongly reduce the electron response to  the 
r.f. field perpendicular to  the line of force and thereby give it greater effect on the 
ions than on the electrons.

To make use of these advantages, a device has been invented at the Nagoya 
Institute of Plasma Physics to  produce a plasma with an end thickness or radius 
of the order of the ion Larmor radius [5]. Such a narrow plasma sustains an 
eigenmode of frequency lying approximately in the middle of coc and 2w c, 
where toc is the ion-cyclotron frequency; the electric field is polarized to  the 
direction nearly perpendicular to  the magnetic field, so that the electron response 
to this field is more strongly reduced than the ion response. Although a proper 
description o f this eigenmode requires a full kinetic treatm ent, the m ode in a 
thin-sheet plasma will to  a certain extent be simulated by the fundam ental mode 
of the electrostatic ion-cyclotron wave in the absence of the finite ion Larmor 
radius effect [6,7 ]. We take this view here and develop a theory for r.f. plugging 
of the plasma w ithin the framework of the fluid description. We also neglect the 
dissipation effect since we aré interested in the adiabatic r.f. confinement.

In Section 2, we first write out the basic equations in the collisionless two- 
fluid mode. In an open-ended system it is necessary to  take into account the 
effect o f plasma flow. To this end, we introduce modified scalar and vector 
potentials, m odification being due to the centrifugal force and Coriolis force, 
respectively. Then in Section 3, we introduce the Clebsch representation for the 
modified vector potential and derive a variation principle to  determ ine the steady 
state of the r.f. confinement self-consistently. In Section 4, we consider the 
situation where both  the plasma and the r.f. field are axially symmetric and 
calculate the quasilinear modification of various average quantities by introducing 
a generalized oscillating displacement vector and by restricting ourselves to the 
case o f a weak r.f. field. Results o f a numerical analysis for the r.f. plugging 
applied to  a line cusp are presented in Section 5, where we model the system by 
a stationary plasma o f an infinite extension w ithout flow. A brief discussion of 
the results is presented in the final section.

2. BASIC EQUATIONS

We consider a plasma tha t can be described by a collisionless two-fluid 
model. That is, we neglect all kinetic effects, such as the finite Larmor radius 
effect, the resonant wave-particle interaction effect, the collisional effect, etc.
The basic equations are then given by the following set:
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v  + v  "V v  = — [ê  + — v  x S s  s  s  m e ss

n  + V ' (n  v  ) = 0 s  s  s

E = c V x B - 4 tt b q  n  vs  -“s  s  s

= 4ir § qs n s

4-
В = -  с  V x E

m n s  s
V P. (1)

(2)

(3 )

(4 )

(5 )

$ - S  =  0  ( 6 )

where the dot denotes the time derivative, the subscript s depicts the particle 
species (s = e for the electron and s = i for the ion), and the o ther notation is 
standard. We assume an equation of state which relates the plasma pressure Ps to 
the density ns and other physical quantities, by which the above set of equations 
is closed.

The ponderom otive force of the r.f. field is given by

-y
F m v  « 

s  s
-y-y
Vv "  < V c ) v s  *

В (7 )

where the bar denotes the time average. The com ponent of this force along the 
magnetic field (or more precisely the modified magnetic field to  be defined later) 
acts to  stopper the end outflux of the plasma. More generally, this force modifies 
the average plasma properties, such as the average density, the average flow 
velocity, the average magnetic field, the average electrostatic potential, etc., and 
the m odification of these average quantities in tu rn  changes the propagation 
characteristics of the r.f. field. Our task is then to  solve the entire problem self- 
consistently.

As m entioned in Section 1, proper consideration of the effect o f the plasma 
flow is necessary for theoretical analysis o f the r.f. confinem ent in an open-ended 
system. Such an analysis can be substantially facilitated if one introduces the 
modified scalar and vector potentials, i.e. by noting that the inertia term of 
Eq. (1) can be divided into tw o parts as
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where the first term on the right-hand side corresponds to  the centrifugal force 
and the second term  to  the Coriolis force. We define the modified scalar and 
vector potentials by the relations

m

Xs -  T + 2 Г  1 ^ 1  2 <9>s

Ш с
a = A + v (10)s q s '

where Ф and A are the usual electrostatic and vector potentials, respectively. 
Associated w ith the modified vector potential, we can introduce the modified 
magnetic field by the relation

ш с—>■ ^  —У — о  -У ->■
fi = V x a = B + - 2 -  V X V (11)s s q ss

which obviously satisfies the condition

$  • Й  =  0  ( 1 2 )

Noting tha t qs a s/c is the canonical m om entum  of the fluid, we can now 
rewrite the equation of m otion ( 1) as

a  = - с  $ у + v  x < 5 ------- ^  p  (13)s As s s q n ss

Our basic equations are then given by Eqs (2) — (5), (12) and (13), supplemented 
by the relations (9) -  (11).

3. VARIATION PRINCIPLE FOR STEADY STATE

Noting the relation (12), we first assume the existence o f a modified flux 
function ф3 defined by the relation

Й ^ ip = 0  (14)s Ts

for each particle species. Then, assuming a periodicity in time, we show in this 
section tha t the steady-state solution of the above set o f equations can be derived 
from a simple variation principle similar to  that o f Seligar and Whitham for the 
usual fluid [8].
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To this end, we introduce the Clebsch representation for the modified vector 
potential, as is done for the velocity in Ref. [8]: instead o f the three components 
of <xs, we use \ps, Xs and ¿us, defined by the relation

“ s = À  { 5 Xs + ? <15>

as the independent variables. In this representation the modified magnetic field 
can be w ritten as

“ s -  ¿  4  * ’  Xs <16>

from which we find that the equations

ips = const and Xg = const (17)

determine the modified magnetic field line.
We now rewrite Eq. (13) using this representation. We first note the 

following relations:

“ s  = â {* s î x s  + * 3 5  +  ?

= à  < * 8  5 i S '  XS 4  + ?  [ + S XS + V 1 <18)

*  Â  K  * ( î  *S  * ? X S>

= À  (19)

n 1 VP = V
■P„ dP

n. -  (  $

rP s  d P e
L)

PQ=constn *■ о s s
( 2 0 )

and assume an equation of state in the form
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Substituting Eqs (18) — (21) into Eq.(13) then yields

=

+ I ^ф

S S S ' S

ф A + uT о  с*s s
2ттс -  + X + —  

s

s s s 
dP

n.

s Эфс + VA
S d Xs J  %

dP
n (P , ф , A , t )  s s s s

(22)

In the first line on the right-hand side, we replace V by

Э/Эфз + ^As Э/ЭАз + Vys 9/ 3y s

and then equate the coefficients of Vi//S, VXS and Vms separately. The coefficient 
of VMs can immediately be integrated to  give

— (ф A + y ) + y + —  2ттс s s s s q

P, dP 
S: Í

=  0 (23)

where we absorbed the integration constant in the indefinite integral. Using 
Eq.(23), we can then write the coefficients o f VXS and V i//S as follows:

ф +  v  - ^ ф  =s s s q ЭА
О  С

dP
n (P , ф , A , t )  s s ' r s s

(24)

A + v • ^A = - s s s q Эф
dP

W  * s '  Xs '  t}
(25)

Equations (23) — (25), combined with the continuity equation (2) and the 
Maxwell equations (3) and (4), determine the steady state in the present represen
tation.

We now show that these sets of equations can be derivable from the variation 
principle:

б М Ф д ,  A s ,  У з ,  4 » ,  A] = 0

where

L = /dt f d3x I Ё  I 2 -  I В I 2 
8тг

+ E P

(26)

(27)



RF PLUGGING 447

To show this, we use Eq.(23) to  calculate 6PS, i.e. we first take the variation of 
Eq. (23) to  obtain

Í . ш
----  ( Si¡> X + ф б X + ôy ) + ôV + —  v  • ôv

2 тгс s  s  r s  s  s  q  s  ss

+ — —  ô P + —  (бф ~ -  
qsns s  4 S V s s  Э X

dP

n
=  0

(28)

where we used the definition (9). Using Eqs (10) and (15), we have

(m c / q  ) ô v  = -Ô A  + - М б ф  $X + ф $6X + f o y  ) (29)S S S 2 7T s  s  s  s  s

which we substitute into Eq. (28). Using also the relations

W Xs  + fiy s ) = 3 ^ ( n s V  + V V

-  6X„ r r  (n  ij) ) -  { y  n  
S d t  S r S S S

n  V * (Ф„^0А + у ) = ( n  ф v SX + n  v  бу  )s  s  s  s  s  s r s  s  s  s  s  s

-  6 X ( n  Ф v  ) -  6 y ^  • ( n  V  ) s  s  s  s  s  s  s

we then obtain the following expression for SPs:

dP
бР = -  {ф n 

s  r s  s 5Г7— /  — — + ( X + v  A )Эф n  2 irc  s  s  s

+ б X q  s  s
1  3

% 3Xs
d p s  J L L L f  i ï 
n  2 i r c [ 3 t  n s

+ V (n  ф v  ) 
s  s  s

+  ôy  [ ñ  +  ^* (n  v  ) ]s  2ttc s  s  s

-  бУ q  n  + 6î t ‘ q  n  v  / с  s  s  s  s

_ Э _

9 t

n

2^ ' V XS + S V 2 i re (^s 6Xs + 6 V

(30)
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The last line in Eq.(30) vanishes when we integrate 5PS over the space and the 
time assuming that SXs and 5/us vanish on the surface and noting the periodicity 
in time.

The variation of the electromagnetic field pressure can be calculated as 
follows:

6 ( Ü Ë l i ) =  J L . ( _  v  ö y -  -  ô a )
' 4тт с

-»
В

4тт
(V x б A)

-*■ -> 
V-E 
4тг

+ ÔA- (-г—  E - -т— V x B )  4тгс 4t7

8t 4ttc 4tt (31)

Again the last line gives no contribution to  the space-time integral under appropriate 
boundary conditions.

Substituting Eqs (30) and (31) into Eqs (26) and (27) then yields

ÔL = /dt /d3x E [бфs 2irc
s s 2ттс Э j. dP

qs Эфз

+  6X s 2irc
2тгс dP

ns Э A n s s

+ Û  < V s >  + V(ns V s :

s 2тгс s s s

+ <5Y( -  E q n + E)s 4tts

+ ÔA (— E q n v + ---  E -  -— V x в) }c s s s 4тгс 4тгs
(32)
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Obviously, SL/ÔMs, SL/бФ and SL/5A yield Eqs (2), (3) and (4), respectively, 
while Eq. (25) is derived from 5L/ 6ф8. Using Eq. (2) and 5L/6XS then gives 
Eq. (24). This completes our proof.

4. QUASILINEAR THEORY FOR THE AXISYMMETRIC CASE

To obtain more explicit analytical results, we consider in this section the 
situation where bo th  the plasma and the r.f. field are axially symmetric and the 
amplitude of the r.f. field is sufficiently weak. In particular, we derive explicit 
expressions or equations for the quasilinear m odification of various time-averaged 
quantities.

Before considering the weak-field limit, we first derive some useful formulas 
valid for a general axisymmetric system. By axisymmetry, we mean that all 
quantities are independent of ф in the cylindrical co-ordinate representation, 
(r,0 ,z). Then the divergence-free vector, such as can in general be w ritten in 
the form VL X V0 + MV0, where L and M are certain functions of r, z and t.
In particular, we have from Eq.(14):

where we suppressed the suffix s designating the particle species. Comparing 
Eq. (33) with Eq. (11), we find

The Clebsch representation for the modified vector potential can be rew ritten in 
a more physical way as

where the first term  denotes the 0-com ponent, the second term  the component 
across the modified magnetic surface and the last term  the ‘poloidal’ component. 
Comparing Eq. (35) w ith Eq. (15), we have

(33)

(34)

a 2~  + Ь (г , г )^ф  + ^ u ( r , z ) (35)

X = ф -  2тг h (36)

y = 2тт ( u + Ьф) (37)
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Equation (36) implies that all quantities are independent o f X. Using these 
relations, we can immediately rewrite the equations of m otion (23) -  (25) as

• • D Я р

u  + Иф = -cx ~ q  ̂ I T  (38)

ф + v - ^ ф  = 0  (39)

h  + v ' V h  = ^  f P —  (40)2ттг q Эф n

In many cases of interest, the equation of state is given by the form P = P (n, ф, t)
rather than by the form of Eq. (21). One can then write the pressure contri
butions in the form

,P dP _ ,-n dn ЭР
n  n  9n

Э ,p  dP  _  J _  ^ id n  ЭР 
Эф n  1Эф n  Э п р

, Э лП d n  ^ P ,  1 Э_Р . Эп>
Эф n  3n  n  n  Э п Эф P

. Э ,n  d n  ЭР. _ 1 ,  ЭР, 
Эф n  Эп n  п  Эф n

We now consider the case of a weak field. As in Ref. [9], we divide the 
variables into the static parts denoted by a bar and the oscillating parts denoted 
by the suffix 1, and calculate the latter in the quasilinear approxim ation. To 
simplify the argument, we assume that the time dependence of the system arises 
solely from the oscillating field and that the pressure P is a function of the density 
alone, P = P (n). We can then write

/ p  = H (n)  + f  (ф) (41)
n

where f  (ф) is the integration constant which, by assumption, does no t explicitly 
depend on time. The static and the oscillating components of the equations of 
m otion and continuity are then w ritten as
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v* \7ф + V i - ^ф i = 0 (42)

-»- -+■ 
v .  VA + V i ' Í A  j = ■ 2 ttc

q
f  ' (ф) (43)

1 .
ö---- Ф i
2 ï ï c

Ai + X + “  q (H + f ) = 0 (44)

-У — -У
v* (nv +  n i V i )  == 0 (45)

Фх + v - ^ 1  +
->
Vi • ^ф = 0 (46)

Xi + v* VA i +
-y
Vi •VA = - 2 IT C .en / Г \ ; 

q f  (ф)фх (47)

ñ i  + V " ( ñ  V i + n i  v ) = 0 (48)

The following calculations can be considerably simplified if one introduces a 
generalized oscillating-displacement vector whose three com ponents are 
determined by the following three equations:

Ф1 = -Q ’ Vijj , A1= - Q - ^ X  , n ,  =  4  (ñQ)  (49)

or alternatively, using Eqs (46) — (48),

V’ V^ j  + V i ' ^ i p  = Q'^ip (50)

v - ^Aj  + V! - ^A + f "  (ф)ф1 = è ^ A  (51)

\7* (n Vi + n i v )  = Î  • (n S) (52)

An explicit expression for Q obtained by the first-order perturbational calculation 
is derived in Appendix I (see Eq. (A—8)). There we also show the following 
relations which are valid correct to  the second order w ith respect to  the oscillating 
field amplitude:

ñ  v ,  + r i j v  = ^ x (Ô x ñv )  (53)

v  x i î i  + v  x ^  = 2 > x ^  -  — ^  [ f  ' ( ф ) ф 1] (54)

Note tha t these relations are valid even for non-axisymmetric systems.
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We now calculate the quasilinear m odification of various average quantities. 
We first calculate the fluid variables in terms of the oscillating variables, the average 
flux function ф, and the electromagnetic variables; we then derive an equation to 
determine ф from the self-consistency with Eq. (34); we finally derive the 
equations to  determine the average electromagnetic variables.

We start from the static force balance along H , i.e. Eq. (44), which deter
mines the average density. Using the first two equations o f (49), we have from 
Eq. (44)

¿  (Q x Q ) -  Ь  x + I  (H + f )  = 0 (55)

We calculate H and f correct to the second order as

H + f  = H ( n )  + f  (ф) + \ [H" ( ï ï ) ï ïT ’2’ + f "  W J T *  ] (56) 

while x  can be w ritten, using its definition (9), as

X = Ÿ + ¿ I  ( I v |2 + [ v x [ 2 ) (57)

Substitution of Eqs (56) and (57) into Eq. (55) gives an equation to  determine 
n in terms of the o ther quantities. In the special case of isothermal variation, i.e. 
P = nT with T = const, we obtain

Tlog — = -g4 '-^- [2 (Q x Q) • Й + m ( I v I 2 + |vx 
N (Ф) 2 C

- П] 2 T/n2 + f  " (Ф) Ip! :

2 )  ] 

(58)

where N(i//) is an arbitrary function of ф, and v, Ф and Í2 are calculated below.

We next calculate the average flux density nv. Because of Eq. (45) and the 
axial symmetry, we can write

n v  =  v r  X Уф +  G (59)

We first take its component across the modified magnetic surface:

nv‘ Vф = (vr X ?ф ) • ?  Ф = ?r ■ (̂ ф X ^ф) (60)
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Noting the relation

which follows from Eqs (2) and (39), and using Eqs (45) and (53), we can rewrite 
the left-hand side of Eq. (60) as

nv* Уф = -V * [ (nv)  i ф í ]

(nvijj) = -  (-^7 пф) = 0 (61)

= ' [ tp i ( n  Q + ^ x ( ( $ x n v ) } ]  (62)

As shown in Appendix II, the right-hand side can be rew ritten correct to  the 
second order as

-  V" [ ф i {n Q + ^  x (Q x n  v )  }]

= j  (^ф  x ^ ф ) • ^ [ r 2ñ  (Q x Q )  - V ф]

-  ( Уф i x ^ф)  • ^ ( Q - ^ Г )  (63)

We calculate the last term  in Eq. (63) by approximating Г by its lowest-order 
expression, r 0(i//). Then we have, using the first of Eqs (49),

$ ( б - $ Г )  = ^ [ Q - ^ ф  Г ó (Ф) ]

=  -  ^  [ Г 0  ( Ф ) Ф i ]

= -  Г о " ( ф ) ( ^ф ) ф i -  r ¡  (ф) ^ф i (64)

Substitution of Eq. (64) into the last term of Eq. (63) yields 

-  ( У ф !  x  ^ ф )  ( Q - ^ D

= -  Го (ф)Уф* ( 1 ф ! 2) X Уф]

= (Уф X $ф) - у (¿Г о Сф) Ф1 2 ) (65)
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Using Eq. (65) in Eq. (63) and substituting the result into Eq. (62) and then into 
Eq. (60), we finally obtain the ‘poloidal’ flux Г as

Г = Г 0 (Ф ) + |  Го (Ф) ф ! 2 - i  г 2 п(бхб) (66)

This determines the r,z-com ponents of the average flux. If we calculate nv- 
in a similar way, we can obtain the ‘toroidal’ flux G in the form (see Appendix II):

G = 2 тгг2 Уф • [ {Го (Ф) + | г Г  ( ф ) ^ ! 2 } ^  + г "  ( ф ) ф ^ 1]

-  ZüZls. H { f ’ (ф) + f "  (ф) + ( ф ) ф ! 2 }
4 n

(67)
On the other hand, G can be written as

С̂ ф = n + n i v ^  (68)

where v^ is expressed in terms of ф and Аф by Eq. (34). If we also note the 
relation

7=r — me r Э Д  ЭГ --  . 1 -,
0 ,  = В ,  -  —  [ 1— т ~~ +  n j V i j -  — iф ф q d z r d z  L -

9 j- 1  Э Г -------------------. 1  / , n ,

+  э ¥ { Б  a ï  '  n i V l z }  -  } ]  <6 9 >n

which follows from Eqs (11) and (59), then Eq. (67) can be regarded as an 
equation which determines the average flux function ф in terms of the oscillating 
variables and the electromagnetic variables.

Our final task is to  determine the average electromagnetic variables by 
Maxwell’s equations. Taking the time average of Maxwell’s equations, we 
immediately get
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where I is the external current that produces the static magnetic field in the 
absence of the r.f. field. The right-hand sides o f these equations are known 
functions of 'ï/ , B0 , Аф and the oscillating variables, so by solving these equations 
we can entirely determine the quasilinear modification in the axisymmetric system 
in terms o f the oscillating variables.

5. NUMERICAL ANALYSIS FOR RF PLUGGING AT LINE CUSP

In this section, we show some preliminary results o f numerical analysis for 
the steady state obtained by an r.f. field applied to  a line cusp.

In general, the steady state in an open-ended system is obtained by a balance 
between the particle supply by a plasma source and the particle loss due to  the 
end outflux. The object of the r.f. plugging is to  reduce this end outflux by the 
ponderomotive force, and thereby to  increase the plasma density in the interior 
region of the machine for the given plasma source. The reduction of the end 
outflux can be achieved either by the density depression at the end or by the 
slowing-down of the outward fluid velocity. Here, we are interested in the former 
effect, i.e. the effect of the r.f. field on the density depression at the end o f the 
machine. We study this effect by neglecting the plasma flow velocity along the 
magnetic field. N ote that our primary interest is in the possibility o f exciting a 
strong r.f. field inside the plasma at the line cusp due to  the resonance with an 
eigenmode. Using this resonance, we expect an efficient density depression at the 
end, and hence the resulting suppression o f the end outflux, even by a relatively 
weak external r.f. field (the r.f. field pressure is less than the plasma kinetic 
pressure).

In the experim ent of r.f. plugging at the line cusp [7], an r.f. field is excited 
by condenser plates. We therefore assume tha t the r.f. f ie ld ? ]  is electrostatic,

E x = -  V Ï ,  (73)

We consider the frequency in the region coc <  со <  2u>c. In this frequency range, 
the electron m otion across the magnetic field is neglected, whereas along the 
magnetic field we assume that the effective phase velocity со/кц is less than the 
electron therm al speed, so that the electrons obey the Boltzmann distribution. 
Neglecting the ponderom otive force along the magnetic field also, we then have

ne = Ne ( ^e) exp *• e '1'/Te  ̂ ^

To simplify the calculation, we entirely neglect the ion therm al effect on 
the wave propagation. For the m otion along the magnetic field, this can be 
justified if
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I (ш- nwc ) / k MvT | >> 1 ( n = 0 , 1 , 2 , * ' * )

where v j is the ion therm al speed. For the m otion across the magnetic field, we 
must, strictly speaking, take into account the finite ion Larmor radius effect, since 
the experimental scale length across the magnetic field at the line cusp is o f the order 
of the ion Larmor radius. However, an eigenmode analysis for a sheet plasma 
including the ion Larmor m otion shows that the frequency of the fundamental 
mode is close to  that o f the electrostatic ion-cyclotron wave with no finite Larmor 
radius effect [7].

Figure 1 shows the geometry of the model. The plasma thickness in the 
absence of the r.f. field is taken to  be the ion Larmor radius p, and the condenser 
plates are placed along the magnetic field line at a distance 3p from the centre 
of the plasma. We choose the x-axis across the plasma sheet and the z-axis along 
the magnetic field, and assume uniform ity in the y-direction. The temperature, is 
assumed to  be constant for both  the electron and the ion.

Choosing the electrostatic potential in the form

4 = 4 + 4 1 c o s  u ) t  (75)

we have from Eq.(74)

n e  = ( ф^)  e x p  (e Y /T  ) ( 1 0 (Ф) + 2 I j ( 0 )  c o s w t}  (76)

where Ф = e ^ / T e ,  I0 and Ij are the modified Bessel functions of zeroth and 
first order, respectively, and we have neglected the higher harmonics. N ote that 
although we consider the situation where the electric field pressure is less than the 
plasma pressure, Ф can become greater than unity, whence we keep the higher- 
order terms with respect to Ф. We determine 'i ' from the charge neutrality con
dition, ne = щ, where n¡ is calculated by the static ion force balance along the 
magnetic field:

__  _  „ш T 2 (d<i>/dx ) 2
n .  = N . (ф . ) e x p [ -  --------------------------------------------- ] (77)

i  4 T . m. (w2-w 2)1 1  с

where we used the following expression for the ponderom otive force on the 
ions [9];

ш . 
i V.

l l Ä (Qi , • B o  =  -
e 2 ( d V i / d x ) 2

4m.
i

(78)
-со
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F IG .l .  Geom etry used in the

numerical analysis o f  r.f. plugging at a line cusp.

Noting tha t = 4>i = \p because of the absence o f the plasma flow, we then get

(79)
T n (di>/dx)

= ÏÏ7 = N(\p) [ I 0 (Ф) ] П exp [ -  — ---------------------------
e 1 4 га .  ( ш 2 -  ш 2 )

where r¡ = Te/(Te + T 0 and N  = Ne17 Ni17"1. Our variation principle can then be 
w ritten as

ÖL = 6/dx n (T + T . ) + 2 - 3 -  f = 0 (80)e e 1  16 it dx e2 1

The Euler equation of this variation principle becomes a second-order non
linear differential equation for Ф:

_ 1 _  d 4  _ e f _  _ d _

8tt dx2 2m. dxx
I S¿ (Ф) 2 N expШ -Ш 2с

Ten(di>/dx)2

4m.(ш2-ш 2)i  с

d£
dx

N e  n - i
+ -sr— [Io (Ф) ] I i  (Ф) exp

T n(d3>/dx)

4m.(ш2-ш 2) i  с

= 0 (81 )
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Э
>

F IG .2. The upper trace shows the normalized density (solid line) and the normalized r.f. field 

(dotted line) at the centre (x = 0 ) o f  the plasma sheet plotted against z fo r  various values o f  

the applied potential Ф0.' A  fo r Фо = 1, В  for Ф0 = 3, С  fo r Ф0 = 5, D  for Ф0 = ¡0  and E  for  

Фо = 20. The lower trace shows the magnetic field strength in terms o f  o j/lo c(z )  and 

< ¿ p ( n  = n 0)/u>c-

The coefficient of d2 Ф/d x2 of this equation is given by

С (x)  = ш2 -ш 2 -  w 2 (x)  с p
1  -

Te n (d<l>/dx) 2 

2  m .  ( w 2 - w  2 !
( 8 2 )

where cop(x) is the local ion plasma frequency:

4 itN 2

“p <x) = exP 
1

Te n ( d Ф / d x ) 2

4 m.  ( cdz -  w 2 ) i  с
I o  ( * )

П ( 8 3 )

At the point where C(x) vanishes, the differential equation becomes singular and 
one has to  take into account the thermal effects, such as the higher-order dispersion 
effect due to  the finite ion Larmor radius, the dissipation effect due to  the wave- 
particle and the collisional processes, etc. For the case o f weak r.f. field, the 
vanishing o f C(x) takes place at the lower hybrid resonance point,
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со2 = g o 2  + co2(x). Here, instead of taking into account the ion therm al effect, we 
introduce a phenomenological dissipation effect by replacing C(x) by

C(x) = [C 2 (x) + v 2 ] / C  (x) (84)

By varying the value of v between 0.1 соc and coc, we found that the overall 
structure of the steady state is insensitive to  the value of v.

Choosing N(i^) in the form

N ( tJj) = n 0e x p  [- x 2/ 2 p 2 ] (85)

and taking Te = Ti, we have numerically solved E q.(81) by the shooting m ethod. 
The results are shown in Figs 2 and 3. The upper trace of Fig.2 shows the 
normalized density, n /n 0, and the normalized field am plitude, lEjl/-^/16 7rn0T, 
at the centre (x = 0) o f the plasma sheet plotted against z, where the frequency со 
normalized by the local cyclotron frequency coc(z) is shown in the lower trace. 
Note tha t co/coc increases as we go to  the interior o f the plasma. When the applied 
r.f. potential is small, i.e. Ф0 <  1, we can observe little effect of r.f. plugging: 
n (x = 0 )/no =  1 in the outer region where co/coc is close to  unity. In this region, 
the electric field is even smaller than the vacuum field because of the plasma 
shielding effect. Near the point at which со = 1.4 coc, where the applied field 
resonates w ith the fundam ental mode of the electrostatic ion cyclotron wave, the 
electric field inside the plasma is enhanced over the vacuum field. In the region 
where co/coc >  1.49, we find a transition o f the r.f. field from the fundam ental 
mode to  higher wavenumber modes. Although in this region we can observe a 
substantial density depression (n (x  = 0)/n o ~  0.62) diie to  the ponderomotive 
force o f the higher wavenumber modes, the present treatm ent, which neglects the 
ion thermal effect, is not justifiable for these short-wavelength modes. Physically, 
we can expect a substantial reduction of the ponderom otive force effect due to 
the ion Larmor m otion if the wavelength becomes less than the Larmor radius.

For a stronger field, i.e. for Ф0 >  5, we can observe strong enhancem ent of 
the r.f. field and the resulting density depression in the outer region o f the plasma. 
This result is physically expected since the density depression lowers the resonance 
frequency of the electrostatic ion cyclotron wave, as can be seen from the 
dispersion relation,

( ш / ш с ) 2 =  1  +  k j _ 2 p 2 /  [ 1  +  k ± 2 A d 2 ]

where kj. is the perpendicular wavenumber and Xd is the electron Debye length.
In the inner region, on the o ther hand, the density depression stays nearly constant 
(n /n0 ~  0.62) independently of the applied potential. The constancy o f the 
density depression in this region implies a balance between the ponderomotive 
force effect and the electron shielding effect, represented by ^(Ф )*1, in Eq. (79).
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FIG.3. The normalized central density, n (x  = 0 )/n o, for various values o f Ф0 and w/o>c. In 

region A , n/nç, ~  0.62; in region B, n/no >  0.62, and in region С, п/пд <  0.62.
........•' an equidensity line for n/n0 =  0.9
- - - - -  : n/na = 0.1

In Fig.3, we plot the normalized central density, n(x = 0)/n0, for various 
values of Ф0 and oj/ojc. Here in region A, the balance discussed above between 
the ponderomotive force effect and the electron shielding effect is obtained, and 
hence the density depression is kept nearly constant (n /n0 ~  0.62). In region B, 
the field cannot penetrate efficiently inside the plasma because of the electron 
shielding. The m ost appropriate region for r.f. plugging is denoted by region C, 
where the density can be substantially reduced by a strong enhancement o f the 
r.f. field inside the plasma. For frequencies close to  coc, however, the present 
model cannot be applied since the ion therm al m otion is neglected.

6. SUMMARY AND DISCUSSION

In this paper, we have investigated the steady r.f. confinement o f a plasma 
in a magnetic field using the collisionless two-fluid mode. We showed in Section 3 
that the steady state can be determined by solving a simple variation principle.
This variation principle is valid for arbitrary amplitude of the r.f. field. In 
Section 4, we considered an axially symmetric system and calculated the quasi- 
linear m odification of the average physical quantities, such as the density, flow 
flux and electromagnetic fields. The calculation was facilitated by the introduction 
of a generalized oscillating displacement vector. The equation determining the 
modified flux function (modification due to  the Coriolis force associated w ith the 
plasma flow) is a direct generalization o f the corresponding equation in the 
absence of the r.f. field. Numerical analysis for a simple model described in 
Section 5 indicates th a t, under certain conditions, a strong enhancement of the 
r.f. field inside the plasma can be produced by resonance with one of the plasma 
eigenmodes. Such an enhanced field causes a strong depression of the plasma 
density and thereby suppresses the plasma outflux along the magnetic field.
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In the numerical analysis presented here, the plasma flow is neglected. A 
more appropriate model is to  fix the plasma flow flux at the boundary and then 
dem onstrate the density increase by the application o f an r.f. field. I t is also 
necessary to  take into account the effect o f the ion thermal m otion. Within the 
framework o f the collisionless fluid model, these effects are taken into account in 
the present form ulation, and numerical analyses including these effects are now 
under way.

Stability o f the steady state determined by the present formalism is our 
future problem. However, we can present some arguments concerning the 
stability of a sheet plasma with r.f. field. First, the eigenmode in a magnetized 
plasma, such as the electrostatic ion cyclotron wave, tends to  be localized in a 
high-density region, whereas the ponderom otive force in the frequency region 
w c <  oj <  2coc tends to  expel the plasma from the high-field region. Therefore, 
such an eigenmode is likely to  be stable against the m odulational instability. 
Secondly, since the dispersion relation of the electrostatic ion cyclotron wave is 
insensitive to  the density variation, its parametric coupling to  other electrostatic 
waves will be relatively weak. Thirdly, for a cusp configuration w ith characteristic 
gradient length of the magnetic field less than со_1л/Т е/ т е , the electrons can 
always follow the ion m otion by the Debye shielding, so that the r.f. field can 
hardly produce a charge separation. Then the plasma can practically be described 
by the one-fluid model and therefore the parametric coupling to  other modes is 
strongly reduced unless the r.f. field has a very short wavelength. Finally, there is 
a possibility of microscopic instabilities due to  resonant wave-particle interactions, 
since there is population inversion in the cusp region. Investigation of these 
microinstabilities will be left to  the future.
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APPENDIX I

In this Appendix, we show the relations (53) and (54) and derive an explicit 

expression for Q using first-order perturbational calculation.
We start from relation (54). Using Eq. (19), we have

(v x f i)  ! = { (v* ! + V j - ^ Á  )Vl¡J + V - ^ X

-  1 }

=  {  [ Q - ^ X  -  ^  ^

■ è -v î j j  i

where we used Eqs (51), (43), (50) and (42) and neglected the third-order terms. 
Using the relations

è - VX Уф -  $'V\p VX = Ь X (vijj x )

= Q x 2tt£2

f  " (Ф) Ф i + f ' Ô Î Ô ^ i  = ^  [ f  ’ (Ф) Ф i ]

we immediately derive Eq. (54).
To derive Eq. (53), we calculate n (Q -  Vj)- V ^ , n(Q — v^-VX and 

V- [n(Q -  Vj)] by using Eqs (50) — (52). Using Eqs (49), (42) and (45) and 
neglecting the third-order terms, we first have

n  (Q -  V i ) = n v - ^ ф !  = -  ñ v - ^ ( Q - ^ i ¡ J )

= -  V - [ n v  (3 - $ ф ) ]

= + [ ^ф  x (Q x ñ v ) -  Q* ( n v - ^ф)  ]

=f V* [Уф x (Q x Hv) ]

= -  [V x (Q x n v )  ] • Уф (A—1)



from which we get, using ~v- V ф Ф 0,

[n  Q -  ( n v i  + n i v )  + V x (Q x n v ) ] - V i j j  = 0 (A—2)
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Similarly, we have

n  (Q -  V i ) ' ^ A  = n  f " (ф ) ф i + n v - ^ A i

= n  f "  ( ф ) ф 1 + [^X x ( Qx n v )  -  Q - ( ñ v - ^ X ) ]

= ñ x (Qxnv)- ^-(ñQ)v-^Á

-  n Q * ^ ( v * ^ X )

= [ -  ^  x ( Qx n v )  + m v  (A —3)

where in the last line we used the relation (see Eq.(43))

ñ Ó - ^ ( v ’ ^X)  = -  ñ Q • f  " (ф) Щ

__ 2 tt c  —  ,—  n  f " ( ф ) ф х

From (A -2 )  and (A—3), we get

n  V] + n j v  = nQ + ^  x ( Qx n v )  + p  x (A—4)

where, from Eq.(52), p must be a function of ф and X alone, p = p(^,X ). Note 
that we are assuming tha t the time dependence arises solely from the oscillating 
field. Taking the time average of Eq.(A —4), we then find that p= 0 , which proves 
relation (53). N ote that these relations are derived w ithout recourse to  the axial 
symmetry.

To derive the first-order expression for <5, we use the axial symmetry of the 
system in which we can write the zeroth-order velocity as [ 10]
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where the suffix 0 stands for the unperturbed quantity. Then using the first of 
Eqs (A—1) and (A -3 )  and the relations

i i o ' b i  t  ~  t i i - f y o  '

we get

( è - V j ) * ^  = ÿ 1 F ñ 0 • = -  ^  F -^Фо (А —6)
П о  П 0

(Q-VjJ-fa f^f"(iUo)^i + ^  F V v x  q no i

¿ [ 2 ^ c  r 2 f » ( 1p0 ) ^ 1 - |2L F ^  ] • V A„
4  11 о

(A—7)

—>
where we used relation (36) which yields VX-V0 = r -2. From Eqs (A—6) and 
(A—7) we then get (noting V ^o 'V ^ = 0)

• Q = V! - ^  ^  ™  Ф 1 Г 2 Г ' ( Ф 0 )^Ф  + P  ^Фо X
no q

(A—8)

where, for the same reason as in (A—4) and from Eq.(52), the arbitrary function p 
must be equal to

p = - f -  F ( i M  -  ф ^ ’ (фо ) I
П о  П о

APPENDIX II

In this Appendix, we derive relations (63) and (67). We start from the first 
term on the left-hand side of Eq. (63). Using the first of Eqs (49), we can write

- ( Ф 1 n  Q) = [ ( б " ^ Ф ) п  Q]

=  i  [ $ ф  x  ( 6  x  < $ ) n ] ( A - 9 )



Noting that only the 0-component o f the vector (Q X (^) contributes to  Eq.(A —9), 
we get

-  ^ * ( Ф i n Q) = x { ( QXQ) * ( г ^ ф ) nr ^ф}]

= i  (Уф x \ 7 ф ) - у  { r 2n (QxQ)-Уф} (A—10)

which gives the first term on the right-hand side of Eq.(63). The second term  on 
the left-hand side of Eq.(63) can be calculated as follows:

- V* [фi ^ x (Qxnv) ] = - ^ i - ^ ( Q x n v ) ]

= ^ • [Уфа x (Q x n v ) ]

= ^ * [ ^Фi  x { (Ô x ñ v )  * ( г$ф) г  ̂ ф}]  (A—11)

where in the last line we again used the fact tha t only the 0-component o f the 

vector ( ^  X n v )  can contribute. In the last expression o f Eq. (A —11), we 

approximate nv  by nv = ЧГ X V0 + GЧф, where the last term , GV0, gives no 
contribution to  Eq. (A—11). Then using the relation

Q x (V r x ?ф  ) = .  ( 0 * УГ ) У ф  (A—12)

we can immediately get the second term  on the right-hand side of Eq.(63).
Calculation o f the ‘toroidal’ flux G can be carried out in a similar way.

Using Eq.(36), we first have

(nv)*^x = (^Г x ^ф + С^ф)-^(ф - 2-rrh)

= —  -  ( V X  x Уф) • V T  (A—13)
r 2
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The left-hand side can be calculated as

nv* ^X = ^ . ( n v X )  = (nvX) -  ^ • [ (nv)  i X j ]

9 i . . 2 it с  ¿г i / i \•g^(nX) -  ——  П f  (ф)

V* [ X x í n Q  +  ^  x  ( Q  x  n v ) } ] ( A - 14)
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where in the last equality we used Eqs (25), (41) and (53). The first term in the 
last expression vanishes while the last term can be calculated in the same way as 
for Eq. (63):

-  ^ • [ A x {nQ + $  x (Q  x n v )  }]

=  -| ( V A  x $ф)-$ { r 2n (Q x Q ) - ^ }

-  ( ^ Ai  x ^ф)  • ^ ( Q - ^ Г )  (A—15)

Substituting Eq. ( A - 15) into Eq. ( A - 14) and then into Eq. ( A - 13), and using 
Eqs (66) and (64), we get

Я г  =  ( $ A  x  $ ф )  [ Г 0 ( ф )  +  г "  ( ф ) ^ ]  -  Г Т Ч ф )

+ (VAi x Уф) - {Г* (ф)($ф)1р! +Г0 ( ф ) ^ ф 1>

= ^ ф - {  -  Г ó (ф) ($\ x ^ф  + x

-  j  Г 0 (ф) ф i 2 ($\ x

-  Г о ( Ф) Ф i ( ^А x ^ф  j + ^ А 1^ф)  }

-  Н Р Т ф Т  (А—16)

Using Eq.(16) and neglecting the third-order terms, we finally get Eq. (67).

REFERENCES

[1 ] MOTZ, H., WATSON, C.J.H., “ The radio-frequency confinement and acceleration” , 
Advances in Electronics and Electron Physics (MARTON, L., Ed.), Academic Press, 
New York (1967).

[2] SHELBY, C.F., HATCH, A.J., Phys. Rev. Lett. 25 (1972) 834.
[3] HATCH, A.J..SHOHET, J.L., Phys. Fluids 17(1974) 232.
[4] GITMER, S.J., SHOHET, J.L., Phys. Fluids 20 (1977) 1019.
[5] AD ATI, K., et al., Ann. Rev. Inst. Plasma Phys., Nagoya Univ. (1975) 44.



RF PLUGGING 467

[6 ] WATANABE, T., HATORI, T., Inst. Plasma Phys., Nagoya Univ. Res. Rep.
IPPJ-132 (1972).

[7] HATORI, T., et al., “ An adiabatic RF-plugging scheme for a controlled fusion reactor” , 
Plasma Physics and Controlled Nuclear Fusion Research 1974 (Proc. 5th Int. Conf.
Tokyo, 1974) 2, IAEA, Vienna (1975) 663.

[8] SELIGAR, R.L.,W HITHAM,G.B., Proc. R. Soc. (London) A30S (1968) 1.
[9] WATANABE, T., LEE, Y.C., NISHIKAWA, K., Plasma Physics, Nonlinear Theory and 

Experiment (Proc. 30th Nobel Symp. 1976), Plenum Press, New York, London (1977) 142.
[10] WATANABE, T., NISHIKAWA, K., Inst. Plasma Phys., Nagoya Univ. Res. Rep.

IPPJ—282 (1977), Phys. Fluids 21 (1978) 390.



IAEA-SMR-32/13

ON THE EVOLUTION OF 
TOKAMAK PLASMA EQUILIBRIA

G.V. PEREVERSEV, V.D. SHAFRANOV,
L.E. ZAKHAROV
Kurchatov Institu te o f A tom ic Energy, 
Academy o f  Sciences o f the USSR,
Moscow,
Union o f  Soviet Socialist Republics

Abstract

ON THE EVOLUTION OF TOKAM AK PLASMA EQUILIBRIA.
The problem o f the evolution o f the magnetic configuration o f a toroidal tokamak-type 

system is shown to be soluble separately from the plasma diffusion process, in the case o f a 
prescribed plasma pressure. In other words, to calculate both poloidal and toroidal field dif
fusion, a knowledge o f the ‘effective’ transverse conductivity aL (which is responsible for 
anomalous diffusion) is not necessary. The knowledge o f Оц is essentially sufficient. Since 
the latter is described by the classical Spitzer formula for a stable stage o f the discharge, the 
problem o f evolution acquires a reliable basis.

1. INTRODUCTION

According to  widespread opinion, an optimized tokam ak-type system should 
have a small-aspect ratio and non-circular cross-section. The shape o f the magnetic 
surfaces o f such a system is sensitive to  the plasma pressure and current density 
distributions. F or example, all magnetic surface cross-sections are similar in an 
elliptical plasma column if current density is uniform, while they are found to be 
more rounded near the axis in the case o f  a peaked current. Therefore, the 
tem poral dependence o f the plasma parameters leads to  the evolution o f the 
magnetic configuration. Knowledge o f  the evolution is necessary to control the 
equilibria and stability of the plasma.

A num ber o f  papers [1—10] have been concerned with the study o f  methods 
to  solve the evolution problem by neglecting the inertia term. Among these, only 
those papers which do not require a knowledge o f the transport processes have 
a reliable basis. These, first o f  all, are the papers by Grad et al. [1—4], showing 
tha t, in the framework o f ideal MHD, such a ‘dissipative’ problem as bifurcation 
o f the equilibria, o f the type where the plasma is split into tw o columns in the

469
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Doublet device, may be solved. The solutions on different sides o f the separatrix 
are matched by the appropriate boundary conditions. The second im portant 
problem, which does not involve the transport processes, is that o f the evolution 
due to  very rapid growth of the plasma pressure. This is the concept o f the so- 
called forced-flux conserving tokam ak [8—10], which aims at achieving a high 
ratio o f plasma pressure to  the pressure of the magnetic fields (o f the order of 
10—20%). Considerations based on flux conservation are valid when the duration 
o f  the process t <  ts = ста2/4, where a is the electrical conductivity and a 
is the transverse dimension o f  the plasma. If t >  t s, dissipative transport should 
be taken into account. Unfortunately, the available classical or neoclassical trans
port theories do not agree with the experimental data, and the approaches based 
on these theories are therefore only of methodological interest.

This paper formulates a simplified approach to the dissipative evolution of 
equilibria — a prescribed pressure method. It requires knowledge o f only one 
com ponent, parallel to  the magnetic field, o f  the generalized Ohm ’s law, i.e. 
essentially only the longitudinal conductivity is necessary. As seen from experi
m ent, the  la tter is classical Spitzer-Coulomb collisional conductivity taking place 
during the most interesting hydrodynamically stable phase o f  discharges.

2. EVOLUTION EQUATION

The m ethod o f prescribed pressure in the problem o f the evolution of
equilibria is as follows. Instead o f obtaining doubtful data concerning the plasma
pressure distribution, using an inadequate theory o f diffusion and thermal conduc
tivity, we shall take the pressure to be a given function o f t,a  where a = a(?, t) is 
the magnetic surface equation. F or a given p(a,t), the toroidal and poloidal magnetic 
fields are not independent; they are related by the equilibrium equation:

ro t В X В = Vp (1)

It follows that we need only one equation to  find the tem porary dependence of 
the equilibrium parameters.

Let us consider a generalized Ohm ’s law:

S + v x 5 = —  ( 2 )
ene

where R implies all forces of non-electrical origin—friction between different 
kinds o f  particles, thermo-electromotive force, etc. Taking the scalar product 
o f the vector equation (2) with В, В X V p, V p, we obtain, taking into account 
condition ( 1),
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-*■ -*■ R ' В
E В = ------  (3)

ene

E X B - V p - | B | 2v Vp  = ~  R X B Vp  (4)
ene

E V p  + v B X V p  = ---- R V p  (5)
e n e

Expressing the electric field in terms o f vector and scalar potentials:

ЭА ->
E = -  — - V 0 ,  A V p  = 0 (6)

one finds from Eq.(3) a magneto-differential equation for ф:

_► ЭА 1 -*
B-V0 = - B - ------- — R-B (7)

9t ene

The solubility condition leads to  the equation:

. Э А \ 1
B - — )  = ------- (B 'R ) (8)

9t /  ene

where the angle brackets denote averaging over the layer volume between two 
narrow magnetic surfaces. After solution o f Eq.(7) for ф, Eqs (4) and (5) serve to 
determine the normal and tangential com ponents o f the velocity relative to  B. 
Therefore only Eq.(8) describes the temporal evolution. Taking into account 
the dominating role o f Eq.(8) in this approach, it will be referred to  as the evo
lution equation. In the case o f  <R-B>/ene = <j • В>/ац,which is valid at least in 
the collision-dominated region, the evolution equation is written in terms o f 
transverse and longitudinal magnetic fluxes and electric currents Ф, Ф, I, J [ 11 ]:

ф ' ф - ^ ' ф  =  — ( J I ' - I J ' )  ( 9 )

° I L

Here Ф' = ЭФ(аД)/Эа, Ф = ЭФ(a,t)/Эt,and so on. Currents J , I are related to  the 
flux derivatives 'I '', Ф' through the metric tensor gik o f the proper co-ordinate 
system with ‘straight’ field lines [12, 13, 3],

J = a 22^ '+  «23 Ф'
(10)

- I  = «23'I '' + <*33 Ф'

“ ik = <êik/g> > g = D e tg ik
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Therefore Eq.(9) includes tw o unknown functions 'i ' and Ф. The integral 
equilibrium equation may be the second equation for them:

l ' < ï > ' - j V  = p 'V ' (11)

The general m ethod for solving the problem o f evolution with time-dependent 
coefficient <gik/g> is the iterative method [2]. For each time step, with the help 
o f  equilibrium equation ( 1), one finds the co-ordinate dependence solution 
V(r,t) = const and o¡ik(V ,tn) if ^ ( V ,^ ) ,  Ф(У, t n) are known. A fter this the set 
of one-dimensional equations (9), (11) allows us to  determine Ф(а, tn + At),
Ф(а, t n + At) for the next time step.

3. DIFFERENT FORMS OF THE EVOLUTION EQUATION

Evolution equation (9) can be divided into two equations by artificially 
introducing the flux convective transfer velocity v(a) = (v • Va> (in the general 
case, it has nothing in common with the plasma diffusion rate):

Э *  , I I ,
—  +  у ф '  = ------------ - У
3t ст., Ф

ЭФ ‘ , 1 J ,
--  + уф = ------- г I'
at ст.. v

(12)

In an axisymmetric case, when a 23 = 0, these equations look like two inde
pendent equations o f diffusion with convection for 'I/ and Ф. In reality, however, 
one of them  determines v. The vector analogue of these equations has the form

ЭА „ 1 ->
------- v X r o t A = ------ rot ro t A (13)
at a„

Evolution equation (9), taking account o f the equilibrium equation (11), 
may be rew ritten in a form resolved with respect to  J ',  I':

J ' =  J  [ a l l ( Ф ф ' "  "  J p ' V ' ] ( 1 4 )J v  -  1Ф 11

(15)
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The vector analogue o f these equations is

f =^{o,,B(E-B) + B X V p }
|B|2 11

The role o f  the equation j*= ro t В is played by Eq.(lO).

Let us take a =  Ф. Then Ф' = 1, Ф = 0, and the evolution equation (9) 
takes the form

(16)

Э Ф ( Ф ^ )

at
i! J./’í
o„ ЭФ VI

(17)

D ifferentiation with respect to  Ф yields the diffusion equation in the Ф-space 
for the rotational transform p =

(«33 + a23p)2 9 (а22р + а2Ъ
ЭФ V «зз + oí23p

(18)

Similarly, taking a =  Ф, we obtain

ЭФ(Ф,0 J2 Э / I
9 t  ст.. 9 ^ x 1

(19)

Differentiating w ith respect to  Ф, we derive the diffusion equation with variables 
t for ro tation num ber q = dФ /d'í':

9q _ Э 
9t ЭФ

( «2 2  +  «2 3  q ) 2

ö|| Э Ф  \ a 22 +  «2 3 q
(20)

It should be particularly emphasized tha t although the equations are formally 
similar to  those that could be obtained from the simplest Ohm ’s law J=  a(ls + vXB),  
they are applicable to  a more general form of the generalized Ohm ’s law:
(j||/<J||) + ( j ^ )  = E + v X В + R^/ene . In this case if, for example, v implies 
the plasma velocity, as it does in o ther papers devoted to  the evolution problem, 
then both  Eqs (12) would acquire some more terms (see e.g. Ref. [14]). If, 
however, v is excluded we shall again arrive at our evolution equation (9).
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4. A X IA L  SYMMETRY

In the case o f  axial symmetry it is easy to  obtain the equations [3 ,15]: 

V'(a) / |У а |л
Û23 - 0 ; <x2i . 24ж
 ̂ _ V' / |У а |2\  ЭФ

4tt2 \  X2 /  Эа

X2

I =-

_  47Г2 /  1

аэ3 ~ v '(a ) \x -

47Г2 ЭФ

(X is the distance from the symmetry axis.)
Evolution equation (9) and its variations (17)—(20) are o f the form:

ф ' ф - ф ' ф  =
Ф'/V '

сти<1/Х2> Эа
, / |V a |2\  ЭФ

Ф 'У '/ |У а |2\  Э 
о» \  X2 /  Эа

X2 /  Эа

ЭФ/Эа
У'<1/Х2>

э ф ( ф , ^

at

Эм__Э_ 
9t  ~ ЭФ

1

' 9 V \2 /  I V  ЭФ

* Л )

Э У \  /  1 \  / |УФ12\  ЭФ 
Э ф / \ Х 2/ \  X2 / Э Ф

ЭФ
ЭУ\ 2/  1 \  /1УФ12 

Э Ф / \ Х 2/ \ Х 2 ^
/Э У \2/  1

"\ЭФ )  \ х :

ЭФ(Ф^) _ _1_ / Э У \  / |У Ф |2\  Э ЭФ/ЭФ
9t '  Оц \ Э Ф /  \  X2 /  ЭФ / э у \2 /_1_\ / |У Ф |2'

Эд _ 9 
9t ~ ЭФ

\ЭФу/ \ Х 2/  \  X

У '2(Ф) / 1УФ|2\2 9_________ д
о., \  X2 /Э Ф  /  1 \  / |У Ф |:

у -
кХ2/ \ X2

The shape o f  the magnetic surfaces can be determined by using the eguation

(22)

(23)

(24)

(25)

(26) 

(27)

( 2 1 )

, УФ  
dlvx ^  = 2 жХ *ф

(28)
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where, according to  the equilibrium conditions, 

4тг2 X2 p'
2 îr X j0

П '
(29)

Making use o f the identity (the consequence o f Eq .(l 6))

1
I'

<|B|>2 V1
(30)

the right-hand side o f  the latter relation can be w ritten so that it will contain a 
com bination o f the quantities (JI' -  и ') /Ф ' = С, which enters into the evolution 
equation:

2 п Х ) ф  = - 4 т г 2 — X2
<B2> (B^>

<В2Х1/Х2> <В2Х1/Х2>
(31)

where Вт  is the toroidal field and В the to tal magnetic field, so

<Bx> 1
<|B|2> 1 +M2<l/X2X|VV|2/X2>(27r)-

(32)

For rapid processes, when the relationship between the fluxes ^  and Ф 
varies only slightly, or does not vary at all as is usually assumed for a flux- 
conserving tokam ak [10], the right-hand side o f the evolution equation should 
be used as

ЭФ / I V 2 Э
avav \x

i \ / i v v i 2
x 2/ (33)

For slow processes it is better to  use

с  =  а ц — ( Ф Д ) (34)

in E q .(31).
In particular, in a steady-state case, when the power of the particle sources 

and energy and the inductive electromotive force are chosen so tha t the con
figuration does not vary with time (in this case a ^ / a t  = <£0 = const) the equi
librium equation takes the form (which coincides with that obtained by Taylor [6]):

Э2 Ф  1 Э *  Э2 Ф  
------------------- 1------- = — 47Г p (Ф)
ax2 x ax az2 p

(B2.)

<B2X1/X2>

<B2 >

+ Œ2>an^°
(35)
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When the external conditions are fixed, the steady-state solution depends on two 
functions, р(Ф) and an('I').

5. CYLINDRICAL SYMMETRY

To illustrate the features o f  the problem concerned with the evolution of 
equilibria, let us consider the simplest situation o f a plasma column in cylindrical 
symmetry. In this case there is no problem in finding the system of magnetic 
surfaces (i.e. the main point considered in our analysis), but one of the points, 
the penetration o f the magnetic field into the plasma, becomes well understood.

To describe the evolution in a cylinder let us take the diffusion equation (14) 
with the equilibrium condition ( 11), in which the cylindrical radius r will be 
taken as a co-ordinate:

ЭФ B0BZ Эф
B y --------------------------

9 t  2жт  9 t

B2 9 ЭФ n Эр
-  — —  r — + B0 —  (36)

r 9r 9r 9r

Bg 9 ЭВ, dp
—  —  rB6 + B, —  = — -  (37)
r 9r Эг dr

In this case

Э Ф  1 Э Ф
Be = — , B. = ----------------------------------------------------------- -, В = Ba + Bl0 Эг z 2тгг Эг 0 2

If 9 $ /9 t is assumed to  be given in Eq.(36), both 0 ^ /9 t  and the poloidal 
field distribution may be determined for the next step o f time. Equilibrium 
equation (37) determines a new distribution o f the longitudinal magnetic field 
Bz , thus allowing us to  obtain ЪФ/dt. This quantity  may be substituted into 
Eq.(36) to  calculate a corrected value dty/dt. Such a procedure o f sequential 
approxim ations is repeated until the  necessary accuracy is achieved, after which 
the next step in time may be taken. This technique, which allows us to  separate 
the one-dimensional diffusion from steady-state equilibrium equations, may be 
also applied in a toroidal case, in which the diffusion equation remains one
dimensional, while its coefficients and the derivative дФ/àt should be calculated 
using a two-dimensional, stationary equilibrium equation. When there are no 
toroidal effects, the characteristic features o f the problem appear only at Be ~  Bz ,
i.e. under conditions typical o f the  Zeta and screw-pinch devices.

Let us first consider the process o f current growth in a cylindrical plasma 
column surrounded by a conducting shell. For simplicity we shall take p = 0, 
ctii = const, the  to tal flux to  be conserved. As has been shown by Kadomtsev [16],



TOKAMAK PLASMA EQUILIBRIA 477

( a )

( b ) ( с  )

F IG .l. The process o f  current growth in a straight cylindrical plasma column. The case o f  weak current:

J all
Bz|t_ n = l ;  — =0.3; a „ =  const; —  = 1 

t_0 2 я 11 4

(a ) Total current versus time.
(b )  Current density and

(c ) longitudinal magnetic field distributions. 1: t = 0 .1 ;  2: t =  0.2; 3: t =  0.3; 4: t = l .

under these conditions the steady-state solution of the evolution is characterized 
by the param eter t¡ = a J /Ф,  where a is the shell radius, and Ja , Фа are the total 
longitudinal current and flux.

Figures 1 and 2 show the evolution of the profiles jz and Bz for two finite 
values o f i? = 0.6 and 77 = 2.5. In the case of a strong longitudinal field (r¡ = 0.6) 
the equilibrium conditions do not influence the penetration of the current. In 
the case of a weak field (57 = 2.5) the increase in the current is followed by the 
contraction o f Bz , and the current penetrates the plasma more rapidly.
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I IС
1.25

О 0.1

( b )

Ja
FIG.2. The case o f  sufficiently strong current: Bz |t _ 0 = 1 ; —  = 1.25.
(a) Current versus time. ^
(bj Current and

(c) longitudinal magnetic field  distributions. 1: t= 0 .1 ; 2: t - 0 . 2 ; 3: t = 0.3; 4: t = l.

The physical picture o f this behaviour is quite clear: as the current increases, 
a force appears which tends to compress the plasma (pinch effect). As a result, 
it should move with inertial vélocity, i.e. instantly (under the assumption considered) 
inwards until the longitudinal field captured by it compensates this inward force. 
The field configurations resulting from such a motion are independent o f the 
intermediate stages and are reflected in Eqs (36) and (37), in which the motion 
is eliminated; there is no inertial term. The effect o f motion to increase the 
diffusion rate appears in changing the diffusion coefficient 1/ay to (B 2/B|)-(l/<7||), 
in which the fields are determined by the equilibrium conditions. In particular, 
as the current increases, the longitudinal field at the plasma periphery decreases, 
resulting in an efficient and rapider penetration o f the poloidal field.

As another example o f the solution o f Eqs (36) and (37) let us consider 
the evolution o f equilibria with rapid plasma heating. Figure 3 presents the results 
o f  the calculation. When the pressure is sharply increased, the configuration 
re-arranges, the fluxes being conserved, i.e. the dependence Ф (Ф ) remains
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0.5
0.4

t
0 0.2 0.4 0.6

( a) ( b  )

FIG.3. Evolution o f  cylindrical equilibria during fast growing o f  plasma pressure, 
the boundary electrical field  being constant.

в 21( = о й 1 ; Г~ = ° -4 i °\\ ~ const; —  = 1; p ( r ,t )  = p0( t ) ( l  - r2)
2n 4

(a) Current versus time.
(b) Plasma pressure versus time.
( c j  C u rren t density  and

(dj longitudinal magnetic field distributions. 1: t = 0.2; 2: t= 0 . 3 ; 3: t = 0.3.

unchanged. A fter this, a slower relaxation process takes place until the steady 
state is achieved.

Note that the calculations have shown that a term with ЭФ/öt entering into 
the diffusion equation is found not to be essential (when the total flux Фа is 
conserved) even at large currents; the equilibrium conditions appreciably influence 
only the coefficients which contain magnetic fields.
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We have shown that to solve the problems o f evolution, assuming a prescribed 
plasma pressure p (V ), it is sufficient to know the expression <E'B> (Eq.(8 )), i.e. 
essentially the longitudinal conductivity ац(Ф). Realization o f the solution is 
possible by both the Grad method [4] and the Taylor method [6]. In the first, 
as well as in Ref. [ 11 ], in which the evolution equations in the form o f Eq.(9) were 
first written, the time derivatives relate to moving magnetic surfaces. Therefore 
the evolution equation (o f  the diffusion kind) is one-dimensional, but it includes 
the unknown ‘surface’ functions (g^/g). To find these functions it is necessary 
to know Ф(г, t). The dependence o f Ф on r is determined from an equation o f 
the elliptic kind, which does not include time derivatives. In Taylor’s method the 
problem is solved in a steady co-ordinate system and it contains the derivatives 
S 'K r^ / ô t  at a fixed point.

These derivatives are related in the following way. I f  a magnetic 
surface Ф(г, t) = $ ( t )  bounds a plasma volume (with a moving boundary!),

6. CONCLUSION

Effective numerical procedures to solve the evolution problem need to be 
developed in order to solve subsequent problems o f total simulation o f the 
plasma processes, since the requirements for accurate location o f the magnetic sur
faces in the vacuum chamber increase with plasma temperature. The transport 
equations needed for determining the pressure are reduced to one-dimensional 
averaged continuity and thermal conductivity equations:

(38)

—  + —  (n (v  V V »  = <Г>
at a v

(39)
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Densities щ, ne and temperatures T e, T; are the surface functions in this case, i.e. 
ni = ni(V, t), etc. The averaged heat fluxes <qiVV>, <qeVV> and the plasma 
expansion rate (v VV> for the collisional regime in general geometry are given 
in Ref. [14]; <Г>, Q^, Qp — the supplementary sources o f the particles and 
heat — depend on a particular problem.
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Abstract

EQ U ILIBRIU M  O F A TO RO ID A L PLASMA.
A class o f exact MHD toroidal equilibrium solutions is found which holds good for 

arbitrary aspect ratio. The main features o f this solution are: (a) near the magnetic axis the 
flux function surfaces are confocal ellipses o f known eccentricities; and (b ) far from  the 
magnetic axis there exists a separatrix with a form  similar to a lemniscate.

The MHD equilibrium equation has already been solved for large-aspect 
ratio by several authors (see e.g. Shafranov [1 ]). Recently, Herrnegger [2] and 
Maschke [3] have presented an exact solution o f the MHD equilibrium equation 
in terms o f Coulomb wave functions. This paper is the continuation o f the exact 
solution presented by Sudano [4].

We wish to solve the MHD equilibrium equations:

divB = 0 (1)

T  = (c/4tt) rotB (2)

c J x В =tfp (3)

inside an axisymmetric toroidal plasma. In cylindrical co-ordinates R, ф, Z,the 
magnetic field В and the current density J are written as usual in terms o f the 
flux functions ф and I by means o f  the expressions:

Ъ = (R q /R ) ё*ф хуф + (Ro/R) I  (R ,Z ) е ф  (4)

T  =  Л ф < Г ф -  (с / 4 т г ) (R 0 /R)e<j) x V I  (5)

In expressions (4 ) and (5 ),R 0 is the large radius o f the plasma toroid. From 
the equilibrium equation (3), one shows that I and p are functions o f ф alone;

I = 1(ф) , p = р(Ф) (6)
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The equilibrium equation (3 ) may be written in the well-known form:

H i  * á i í  - ¿-124 -  - 4 ,  ï i -  l ï .  - I  э_ j ! (7)
9 R 2 3 Z 2 bR R0 2 Эф 2 Эф

The toroidal current density may be put in the form:

Лф = /_4ïïll_  IP- - I 1_ l 2 \ (8)
4irR \ R0 2 Эф 2 Эф ’

I f

I 2 = I 0 2+ ~3ф 2 (9)
2

P = p 0  + а ф

with constant I0, ß, p0 and a, we show that a class o f exact solutions can be found. 
With this choice the equilibrium equation (7 ) becomes

Э2ф/ЭЯ2 + Э2ф/ Эг 2 -  К_ 1 ( Эф/ЭК) =  -  (  4тт / R 0 2 )  a R 2 -  ¿-Зф
2

Equation (11) can be solved by writing ^  ^

i|KR,Z) = Ф j ( R)  + Ф2 (Z) (12)

Combining Eqs (11) and (12), we have
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ф -  R— 1 ф + — ßip + ( 4тт/ R - 2 ) a R 2 = - ф  1X-  —Зф = X
i 1 2 1 2 2 2

(13)
Here,

ф ‘ = ( d / d R ) ф t , ф ^ 1 = ( d 2 / d R 2 ) ^ ,  ф* 1 = d ^ 2 / d Z 2

and X is the separation constant. From Eq. (13) one obtains

ф 1 1 + -^Зф + Л = 0 (14)
2 2 2
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i i - l . iф -  R ф + —ЗФ + ( 4тг/RQ )a R  =X 
i i 2 *

(15)

We took solutions o f (14) which are symmetric with respect to the plane 

Z = 0. We therefore put

1/2

ф = ( 2 A / 3 ) с о s ( 3 / 2)  Z -  2À/3 
2 2

(16)

where A 2 is the integration constant. To solve Eq.(15) we write

-ЗФ -  X = RU( R )
2

(17)

and obtain from Eq.(15)

R2ij + RU + ( - 3 R 2 -  1 ) U = -  ( 4тгаЗ/ 2R0 2 ) R 3
2

(18)

The solution o f (18) may be written as

U = A J [ r ( 3 / 2 ) 1/2]  + ^ R ( 3 / 2 )  1/2J -  ( 4 i r a/R0 2 ) R

( 1 9 )

Here and Y j are Bessel functions, and A j, Bi the constants o f integration. 
Now from Eqs (17) and (19) one gets

ipi = ( 2 / 3 ) R  | ( A i J i [ ( 3 / 2 )  1/2 R ]  + B j Y j [ ( 3 / 2 )  1/2 R ]

-  ( 4 ttcx/ R 0 2)  R (20)

Thus, the exact solution we have given for the equilibrium equation (7 ) is 

i p ( R , Z )  = ( 2 / 3 ) R { A i [ ( 3 / 2 )  1 / 2 rJ +  в Y j £ ( 3 / 2 )  1 /2R ]

-  ( 4 ï ï a / R0 2 ) R }  + ( 2 A /3 )  c o s ( 3 / 2 ) 1/2 Z (21)
2
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To determine the five parameters A 1; B1; A 2, a and ß, we assume that the 
curves i//(R,Z) = cte are confocal ellipses with eccentricity (e ) near the magnetic 
axis and prescribe the value o f \p(R0, 0) = ф0, with R0 the radius o f the magnetic 
axis.

The first condition may be put in the form

ф (R + h ,k) = 4>(R0 ,0) + -  ^  h 2 + -  ^  K 2 (22)
2 3R2j  о 2 3z2J 0

where we impose that

_  Э2 ф

3R o 3Z o 9R3ZJ о
0 (23)

Э2ф'

3R о2 О
(24)

The conditions

0

are satisfied identically. The conditions

give, respectively:

A J ( j i R )  + B Y _  (  ß R )  i o ' o  o i о ' мо о
1 8тга (25)

-ß R Y ( ß R  )] > - — ----- = - А (1- e 2) (26)
0 0 1 0 0 ( H ) 2 2

О о



with ß0 = (ß l2 )V 2. For the value ф (R, Z) at the magnetic axis we choose 
X = 0 and фi (R 0) = 0, so

ф ( Я о , 0 )  = 4 M R , )  + Ф2 ( о )  = Ф0 

1|>(R , 0 )  = ф ( 0 )  = Ь .
°  2  о 2

The condition i//](R0) = 0 gives
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A J  ( ß  R ) + B Y ( ß R )  -  —  = 0 (27)
1 1 О  О  j  i  О О  R

О

Finally we choose j30Ro = 1 f ° r convenience, and solve the subsequent system 
with A 2 as a parameter. A 2 and p0 will be adjusted later to make the pressure
null at the plasma edge and maximum at the magnetic axis:

р ( Ф ь ) = 0 ; Р ( Ф 0 ) = < n 0k T 0 >

J  ( 1) A + J  ( 1) В -  ( 8t t / R  ) a  = 0
o i i i о

J  ( 1) A + Y ( 1) В -  ( 4ï ï / R  ) a  = 0
1 1 1 1  °

[ j  ( 1 )  -  J ( 1 )1  A + Г Y ( 1 )  -  Y (1 )1  В -  ( 8тг / R  )  aL o  i —i i L o  i J j  о

ш -  Ь .  ( 1 - е 2 )
R

о

The solution is:

А А
А = 2.59 (1 -  e 2 ) , a  ”  —2- (1 -  е 2 )

R 4тго

А 2 ,В = 0.179 —  ( 1- е 2 )

О
1 R
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ÿ ( R , Z ) —  ( 1- e 2 ) [ 2.59 J i ( R / R q )

+ 0 . 1 7 9  ï j ( R / R q ) —  J + c o s  ( Z / R  )
R °

о

(28)

P u ttin g

*  '  Г ’  y '  Г  ' к ^ п ° г '  А * к ° го Ro

= Лф ( R o , 0 ) = Зф (фо )

Вф = В ф ( R o , 0) = в ф ( ф о )

X ( х )  = 2.59 J  ( х )  + 0.179 Y ( х )  
i i

we have

ф ( х , у )  = ф о { x  (1 -  е 2 ) [ х  ( х )  -  х ]  + c o s  у }  (29)

J < ¡ > ( x , y ) =  — - —  -1-  [ ф  -  (1 -  e 2 ) x 2 ф 1 
4t tR 2 xО

J <¡ >( x ,  у )  = J (
1 - е '

2- е  ‘
X ( х )  + c o s  у / ( 2- е 2) х 2 (30)

Вф ( х ,  0) = В ф °  { ( 1- е 2 ) [ Х ( х )  -  x ]  + x""1 } (31)

Proceeding in this way, we have fixed the magnetic axis and guaranteed its 
unicity within the variable plasma boundary. Any one o f these surfaces inside 
the region limited by the separatrix can be chosen as the plasma boundary (as 
shown by Shafranov [1 ]), where the pressure is null [р (^ ь ) = 0]. The value o f 
фь is determined by the maximum dimension o f the plasma major cross-section. 
It is also possible to find a solution in the case where the ellipses are elongated 
in the vertical direction (see Figs 1-4).
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FIG.l. Plot o f  magnetic flux surfaces near the magnetic axis fo r  e = 0.5.

FIG.3. P lot o f $ ( X )  = ф(К, OJ/ф ( R 0, 0).
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FIG. 4. Plot o f  current density fo r  Z= 0.
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A.B. K ITSEN K O , I.M. PAN KRATOV: The non-linear theory o f  the excitation o f mono

chrom atic electrom agnetic waves in a magnetoactive plasma by the relativistic beam o f 
charged particles

H.D. A BO U RD JA N IA , A.B. K ITSEN K O , I.M. PAN KRATOV: The non-linear theory o f the 
interaction o f  the charged-particle beam with a plasma in the magnetic field 

V.N. TSY TO V IC H , K. KOM ILOV, F.K h. KHAKIM OV: Statistical theory o f strong Langmuir 
turbulence

K. E L S Ä S SE R , H. SCHAMEL: Anomalous ion heating in the presence o f strong Langmuir 
turbulence

R.N. SUDAN, M. K ESKIN EN : Theory o f  strongly turbulent convection o f 2D low-pressure 
plasma

J . B Y E R S , B. COHEN, W. CONDIT, T . K A ISE R : Computer simulation o f  magnetic field 
reversal in mirror machines 

S.S. JH A , L.K . CHAVDA: Solution for spherical implosion due to coalesced weak shocks 
in a plasma

T. W ATANABE, K. NISHIKAWA: Self-consistent steady state o f  r.f. plugging o f plasma
F .J.H E L T O N , T .S . WANG: MHD equilibria in non-circular tokam aks with field-shaping 

coils

M.N. RO SEN BLU TH : Parametric instabilities in random media 
J.A . KROM M ES: Turbulence and clumps
P. DASGUPTA, B. DASGUPTA: Single-particle distribution in strongly turbulent plasmas

M. TESSA R O T TO : Dissipative trapped particle modes in a toroidal reactor
G.V. P E R E V E R S E V , V.D. SH AFRAN O V, L .E . ZAKHAROV: The evolution o f  tokam ak 

plasma equilibria
M.E. R EN SIN K : Tandem mirror studies at Lawrence Livermore Laboratory 
R.M. K U LSRU D , A.B. HASSAN: Mass m otions in toroidal plasmas
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9 April

A. A IRO LD I CRESCEN TIN I, A. O R EFIC E , R. POZZOLI: Quasi-linear evolution o f the 
slide-away regime in toroidal plasmas 

J.P . SUDANO: Toroidal plasma equilibrium
T. TUDA: Temperature gradient effects on heavy impurity-ion transport in a tokamak 
M. C O TSA FTIS: Non-linear dynamics of Joule-heated toroidal discharges

M.N. RO SEN BLU TH , J .B . T A Y L O R : Diffusion from  large-amplitude drift cells 
T. TAN GE, K. NISHIKAWA: Theory o f impurity diffusion in a turbulent plasma
D.C. BA R N ES, J.U . B R A C K BILL , W. SCHN EIDER: Analytic and numerical studies of 

diffuse 3D equilibria in Scyllac
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CO N V ER SIO N  TA BLE:
FA C T O R S FO R C O N V ER TIN G  SOME O F TH E M ORE COMMON UN ITS 
TO  IN T E R N A T IO N A L  SY STEM  O F U N ITS (SI) EQ U IV A LE N T S

NOTES:
(1 ) SI base units are the metre (m ), kilogram (kg), second (si, ampere (A l, kelvin (К ) ,  candela (cd) and mole (m o l).
(2) ► indicates SI derived units and those accepted for use w ith  SI ;

^  indicates additional units accepted for use w ith SI for a lim ited time.
I F o r fu r th e r in fo rm a tio n  see The In te rn a tio n a l System  o f  U n its  (S I), 1977 ed., pu b lish e d  in  English b y  HMSO, 
L ondon , an d  N a tio n a l Bureau o f  Standards, W ashington, DC. and In te rn a tio n a l S tandards IS O -1000 and the  
several parts  o f  ISO-31 p u b lished  b y  ISO, Geneva. \

(3) The correct abbreviation for the unit in column 1 is given in column 2.
(4) -X- indicates conversion factors given exactly; other factors are given rounded, mostly to 4 significant figures.

=  indicates a definition o f an SI derived unit: ( ] in column 3+4 enclose factors given for the sake of completeness.

C o lu m n  1

Multip ly data given in:

C o lu m n  2 C o lu m n  3

by:

C o lu m n  Л

to obtain data in:

Radiation units 

^  becquerel
d isin teg ra tio n s  per second (= dis/s)

1 Bq
1 s- '

(has d im ensions of s 1 ) 
1 .00  X 10° Bq *

>  curie 1 Ci - 3 .7 0  X 1 0 '° Bq *
>  roentgen 1 R = 2 .5 8  X 10~4 C/kgJ -X-
► gray 1 Gy = 1.00  X 10° J/k g J #

>  rad 1 rad - 1.00  X 1 0 '2 Gy *

sievert (radiation protection only) 1 Sv = о о X о о J /k g ] *
rem  (radiation protection only) 1 rem = 1.00  X Ю -2 J /k g j *

Mass

► unified  a to m ic  m ass u n it  o f  th e  m ass o f  12C) 1 u = 1 .6 6 0  57 X 10- 7 kg, ap p ro x . ]
^  to n n e  (= m etric  ton) 1 t = 1 .00  X ю 3 kg] *

p o u n d  mass (avoirdupois) 1 Ibm = 4 .5 3 6  X 1 0 “ ' kg
o u n ce  mass (avoirdupois) 1 ozm = 2 .8 3 5  X 10' g
to n  (long) (= 2 2 4 0  Ibm) 1 to n = 1 .016  X 103 kg
to n  (short) (= 2 0 0 0  Ibm) 1 sh o rt to n = 9 .0 7 2  X 102 kg

Length

s ta tu te  mile 1 mile 1 .609  X 10° km
nautical m ile (in te rn a tio n a l) 1 n mile = 1.852 X 10° km *

yard 1 yd = 9 .1 4 4  X 1 0 “ 1 m *
fo o t 1 f t = 3 .0 4 8  X 1 0 " 1 m *
inch 1 in = 2 .54  X 1 0 1 mm *
mil (= 1 0 '3 in) 1 mil = 2 .5 4  X 1 0 “2 m m #

Area

>  hec ta re 1 ha 1.00  X 10“ m 2] *

>  barn (effective cross-section, nuclear physics) 1 b = 1.00  X 1 0 ‘ 28 m 2 ] *

square  m ile, (s ta tu te  m ile)2 1 m ile2 = 2 .5 9 0  X 10° km 2
acre 1 acre = 4 .0 4 7  X 103 m2
square  yard 1 y d : = 8.361 X 1 0 “ ' m 2
square  fo o t 1 f t 2 = 9 .2 9 0  X 1 0 “2 m 2
square  inch 1 in2 = 6 .4 5 2  X 102 m m 2

Volume

► litre 11 or  1 )tr 1 .00  X 1 0 '3 m 3] *

cub ic  yard 1 y d 3 = 7 .6 4 6  X 1 0 “ ' m 3

cu b ic  fo o t 1 f t 3 = 2 .8 3 2  X 1 0 -2 m 3

cub ic  inch 1 in3 = 1.639  X 104 m m 3
gallon (im perial) 1 gal (UK) = 4 .5 4 6  X 1 0 “3 m 3
gallon (US liquid) 1 gal (US) = 3 .7 8 5  X 10“3 m 3

Velocity, acceleration 

fo o t  per second (= fps) ft/s 3 .0 4 8  X 10~‘ m /s *

fo o t per m in u te ft/m in = 5 .0 8  X 10~3 m /s *

m ile per h o u r (= m ph) m ile/h =
(4 .470 X 10~‘ 
[1.609 X 10°

m /s
km /h

t> k n o t (in te rn a tio n a l) k n o t = 1 .852  X 10° km /h *

free fall, s tan d a rd , g 
fo o t  per second squared f t / s 2 =

9 .8 0 7  X 10° 
3 .0 4 8  X 10~'

m /s2
m /s2 *

T h is  ta b le  has been p re p a re d  b y  E .R .A . Beck fo r  use b y  th e  D iv is io n  o f  P u b l ic a t io n s  o f  th e  IA E A .  W h ile  e ve ry  e f f o r t  has 

been m ad e  to  e n su re  a c c u ra c y , th e  A g e n c y  c a n n o t b e  h e ld  re s p o n s ib le  f o r  e r ro rs  a r is in g  f r o m  th e  use o f  th is  ta b le .



C o lu m n  1

M ultip ly  data given in:

Density, volumetric rate 

p o u n d  m ass per cu b ic  inch 
p o u n d  mass per cu b ic  fo o t 
cu b ic  fee t p e r second 
cu b ic  fee t per m in u te

Force 

^  new ton  
d y n e
kilogram  fo rce  ( = k ilo p o n d  (kp)) 
poundal
p ound  fo rce  (avoirdupois) 
o unce  fo rce  (avoirdupois)

Pressure, stress

>  pascal
>  a tm o sp h e re a, standard
>  bar

cen tim e tre s  o f  m ercu ry  (0°C)
d y n e  per square  c en tim e tre
fee t o f w ater (4°C)
inches of m ercury  (0°C)
inches o f w ater (4°C)
kilogram  fo rce  per square  c e n tim e tre
p o u n d  fo rce  per square  fo o t
p o u n d  fo rce per square  inch (= psi) *
to rr  (0°C) (= mmHg)

Energy, work, quantity o f  heat

^  joule  {= W s)
► elec tro n v o lt

B ritish therm al u n it  (In te rn a tio n a l Table) 
ca lo rie  (therm ochem ica l) 
ca lo rie  (In te rn a tio n a l Table) 
erg
fo o t-p o u n d  fo rce  
k ilo w a tt-h o u r
k ilo to n  explosive y ield  (PNE) (=  1 0 12 g*cal}

Power, radiant flux

► w att
British therm al u n it  ( In te rn a tio n a l T able) per second
ca lo rie  (In te rn a tio n a l Table) per second
fo o t-p o u n d  fo rce /seco n d
ho rsepow er (electric)
ho rsepow er (m etric) (= ps)
h o rsep o w er ( 55 0  f t  • Ibf/s)

Temperature

► tem p e ra tu re  in degrees Celsius, t
w here T is th e  th erm o d y n am ic  tem p e ra tu re  in kelvin 
and T 0 is defined  as 2 7 3 .1 5  К 

degree F ahrenheit 
degree R ankine
degrees o f  tem p e ra tu re  difference**

Thermal conductivity c

1 B tu  in /( f t2 s °F ) (International Table Btu)
1 B tu /( f t- s ,0 F) (International Table Btu)
1 c a lIT/(c m s - ° C )

C o lu m n  2 C o lu m n  3 

by:
C o lu m n  4

to obtain da

1 Ib m /in 3 = 2.768 X 10“ kg/m 3

1 Ib m /ft3 = 1.602 X 101 kg/m 3

1 f t 3/s = 2.832 X 10_î m 3/s
1 f t 3 /m in = 4.719 X 10“4 m 3/s

1 N [= 1.00 X 10° n v k g s “2! *
1 dy n = 1 . 0 0  x  io -5 N #
1 kgf = 9.807 X 10° N
1 pdl = 1.383 X 10’ 1 N
1 Ibf = 4.448 X 10° N
1 ozf = 2.780 X 10“ ' N

1 Pa [ - 1.00  X 10° N /m 2 ] *
1 atm = 1.013 2 5  X 10s Pa *
1 bar = о о X о Pa *
1 cmHg = 1.333 X 103 Pa
1 d y n /cm 2 = 1.00  X 1 0 _1 Pa ■*
1 f tH 20 = 2 .989  X 103 Pa
1 inHg = 3 .3 8 6  X 103 Pa
1 inH jO = 2.491 X 102 Pa
1 k g f/cm 2 = 9 .8 0 7  X 104 Pa
1 Ib f/f t2 = 4 .7 8 8  X 1 0 ' Pa
1 Ib f/in 2 = 6 .8 9 5  X 103 Pa
1 to rr = 1.333 X 102 Pa

1 J [=  1.00 X 10° N m ]  *
1 eV l= 1 .602 19 X 10“ 19 J , approx .
1 Btu = 1 .055 X 103
1 cal = 4 .1 8 4  X 10° J *
1 caljT = 4 .1 8 7  X 10°
1 erg = 1 .00  X 1 0 -7 J *
1 f t- Ib f = 1 .356 X 10°
1 k W h = 3 .6 0  X 106 J *
1 k t  y ield - 4 . 2  X 1 0 12

1 W [ =  1 .00  X 10° J /s ]  •£
1 B tu /s = 1 .055  X 103 W
1 cal it / s = 4 .1 8 7  X 10° w
1 f t- Ib f /s = 1 .356 X 10° w
1 hp = 7 .46  X 102 w  *
1 ps = 7 .3 5 5  X 102 w
1 hp = 7 .457  X 102 w

t = T -  T 0

to p - 3 2  /  \  t  (in degrees Celsius) *
T OR x ( g )  gives T (in kelvin) *
A T 0R (= A to F ) w  [ ДТ (= A t) *

= 5 .1 9 2  X 102 W m '1 K*‘
= 6 .231 X 103 W m _l K _1
= 4 .1 8 7  X 1 0 2 W m “1 K -1

a a tm  abs, a ta : a tm o sp h e res  ab so lu te ; ^  lb f/ in 2 (g) (= psig) : gauge pressure;
a tm  (g), atü: a tm o sp h e res  gauge. Ib f/in 2 abs (= psia) : ab so lu te  pressure.

c  T he ab b rev ia tio n  fo r tem p e ra tu re  d iffe rence , deg (= degK = degC), is no  longer accep tab le  as an  SI unit.
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